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ABSTRACT
Nanoclusters are small clumps of atoms of one or several ma-
terials. A cluster possesses a unique set of material proper-
ties depending on its configuration (i.e. the number of atoms,
their types, and their exact relative positioning). Finding
and subsequently testing these configurations is of great in-
terest to physicists in search of new advantageous mate-
rial properties. To facilitate the discovery of ideal cluster
configurations, we propose the Cluster Energy Optimizing
GA (CEO-GA), which combines the strengths of Johnston’s
BCGA [18], Pereira’s H-C&S crossover [25], and two new
mutation operators: Local Spherical and Center of Mass
Spherical. The advantage of CEO-GA is its ability to evolve
optimally stable clusters (those with lowest potential energy)
without relying on local optimization methods, as do other
commonly used cluster evolving GAs, such as BCGA.

Categories and Subject Descriptors
I.2.1 [Artificial Intelligence]: Applications and Expert
Systems—medicine and science; J.2 [Computer Applica-
tions]: Physical Sciences and Engineering—physics

General Terms
Algorithms, design, performance, experimentation.

Keywords
Cluster energy optimization, Gupta potential, genetic algo-
rithm, nanocluster, CEO-GA, global minimization

1. INTRODUCTION
In this paper, we introduce the Cluster Energy Optimiza-

tion Genetic Algorithm (CEO-GA) derived from the Birm-
ingham Cluster Genetic Algorithm (BCGA) [18]. The CEO-
GA uses H-C&S crossover [25], atom permutation mutation,
and incorporates two new operators: the Local Spherical
mutation (Local-S) and the Center of Mass Spherical mu-
tation (CoM-S). The CEO-GA, while not itself depending
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on local minimization like its predecessors, achieves results
comparable to those previously obtained only via combining
a GA with local optimization techniques.

Bulk solids typically have a periodic arrangement of atoms
(unless they are amorphous), with well defined separations
between the atoms (lattice constant) and characteristic ge-
ometry. For example, bulk Gold (Au) and Copper (Cu) are
members of the so-called face-centered-cubic crystals. The
percentage of atoms on the surface of a bulk material is
negligible in relation to the total number of atoms in the
bulk. Nanoclusters, on the other hand, are clusters of a few
to a few hundred atoms that can be either homogeneous
(composed entirely of atoms of a single material) or het-
erogeneous(containing atoms of two or more materials). A
nanocluster is a unit in itself and decomposing it would al-
ter its physical properties, effectively transforming it into
several different clusters. The atoms on the surface of a
nanocluster (which are responsible for any interactions with
the environment) constitute a considerable percentage of the
total cluster size. Since these surface atoms have lost some
neighbors, they are under-coordinated and thus may serve
as active sites for chemical reactions. Examples of Au, Cu,
and Au-Cu nanoclusters are shown in figure 1.

Figure 1: Examples of Au, Cu, and Au-Cu clusters. Dark
and light sphere represent Cu and Au atoms, respectively.1

1Reprinted with permission from S. Darby, T. V. Mortimer-
Jones, R. L. Johnson, and C. Roberts. Theoretical study of
Cu-Au nanoalloy clusters using a genetic algorithm. Jour-
nal of Chemical Physics, 116(4):1536-1550, 2002. Copyright
2013, American Institute of Physics.



Materials science, which investigates the relation between
the structure of a material and its physical properties, has
in the past mostly dealt with bulk materials. Recent ef-
forts have, however, turned to nanomaterials, which offer
promising novel properties that could lead to technological
advances such as stronger and lighter metals, self purifying
liquids, or new catalysts. The variety of properties of metal-
lic clusters can be drastically expanded through the creation
of nanoalloy clusters, i.e. those formed by two or more met-
als [18]. One of the most interesting aspects of nanoalloys
is the way their physical and chemical properties can be al-
tered through varying the types of atoms in the cluster, their
ordering, and their number [7]. Additionally, nanoalloys of-
fer the opportunity to test properties of the combination
of certain elements that are immiscible when combined in
bulk [1].

So how do these special nanostructures behave? In order
to answer this question we must first discover the most stable
geometric configuration of atoms for a cluster of a specific
size and composition. Clusters whose total energy corre-
sponds to the global minimum for the given cluster compo-
sition (number and types of atoms) are more likely to be
formed during a cluster experiment [12]. Once the optimal
cluster has been evolved, we must construct this structure in
a wet lab (by placing atoms onto a substrate, following the
desired configuration). Finally, we must test the obtained
structure so as to learn about its physical properties. In this
paper we focus on the first step of this process, i.e. finding
the exact relative atom locations for clusters with the lowest
potential energy, given a specific number of atoms and their
types. Starting with a search space of all possible cluster ge-
ometries, we use a GA to find those with minimal potential
energy as calculated by the Gupta potential [5]. The Gupta
potential has been previously shown to provide reasonably
accurate results when assessing nanocluster energy [7], and
thus has become a widely used heuristic employed to avoid
computationally intensive ab initio calculations.

One of the difficulties with discovering lowest energy
nanoclusters is the existence of“homotops”, i.e. clusters that,
despite being composed of the same number and types of
atoms, and having identical cluster geometries, display dif-
ferent properties due to their atoms being arranged differ-
ently within said geometries [15]. Consequently, and al-
though some research has been previously conducted
through time consuming ab initio calculations [16], the ma-
jority of nanocluster formation research uses heuristics, such
as genetic algorithms (GAs).

A GA will search for the optimum configuration of a clus-
ter, given the desired composition (i.e. the number and types
of atoms in the cluster), guided by an approximation of the
interatomic interaction potential of each candidate cluster-
configuration [18]. Examples of such interaction potentials
are the Gupta potential ([5], [2], [21]) and the Lennard-Jones
potential ([8], [12],[25]). Additionally, an energy-optimizing
GA is generally combined with a local minimization method,
such as the quasi-Newtonian conjugate gradient minimiza-
tion L-BFGS (Limited-memory Broyden-Fletcher-Goldfarb-
Shanno) [20].

Current cluster optimizing GAs rely heavily on local opti-
mization techniques, being unable to successfully evolve low
energy clusters when used without them. The purpose of a
local optimization is to get from the current position to the
nearest local optima. However, if diversity in the population

is not maintained, a GA will be unable to continue exploring
the search space for potentially better solutions, effectively
getting stuck. The BCGA, proposed by Johnston [18], uses
high selection pressure, causing the entire population to con-
verge within a few generations, thus decreasing the chance
of finding global optima.

In this work, the BCGA is stripped of its external lo-
cal minimization procedure, L-BFGS [20], and subsequently
augmented with a version of Deaven and Ho’s C&S crossover
developed by Pereira [25]: the H-C&S crossover. Addition-
ally, the CEO-GA ensures population diversity by decreas-
ing selection pressure, and incorporates two new mutation
operators: Local-S mutation and CoM-S mutation. These
improvements allow the CEO-GA to evolve clusters with en-
ergy values comparable to those obtained by the BCGA as
reported by Darby et al. [7]. This represents a large im-
provement over the performance of cluster energy optimiz-
ing GAs without local optimization, as the CEO-GA is able
to evolve the optimal known structures without local min-
imization (which may endanger the diversity of structures
examined during the search process).

2. BACKGROUND
Below we review the history of cluster evolving GAs in

general, as well as discuss the direct predecessor of the pro-
posed CEO-GA: Johnston’s BCGA [18]. In addition, we
describe in detail Pereira’s H-C&S crossover [25] and the
Gupta many-body potential [5], both used in the CEO-GA.

2.1 History of cluster evolving methods
As the cluster size increases linearly, the number of min-

ima increases exponentially. Ab initio methods for calcula-
tions of total energy, such as those based on density func-
tional theory (DFT) [19], become increasingly computation-
ally demanding. Approaches such as the Monte Carlo meth-
ods and Simulated Annealing for molecular dynamics have
trouble finding global minima for certain types of inter-
atomic interactions [23]. Random search algorithms also
struggle to find the optimum even after thousands of
searches [28]. As an alternative approach to cluster opti-
mization, researchers have been turning to GAs, which have
generally been able to evolve optimal clusters after a rel-
atively small number of energy evaluations and local opti-
mizations [28].

Hartke [11] and, independently, Xiao and Williams [31]
conducted the first attempts to use GAs for the optimiza-
tion of cluster geometries. The devised GAs used a binary
encoding with corresponding genetic operators that modify
the binary strings that represent each candidate cluster con-
figuration. Zeiri improved this approach through the use of
real-valued Cartesian coordinates to represent the location
of each atom in the cluster [32]. Deaven and Ho further im-
proved GA cluster optimization by using a gradient driven
local minimization to optimize each configuration discovered
by the GA during its run [8]. Yet another significant step
pioneered by Deaven and Ho was to improve the crossover
genetic operator by crossing the parents’ phenotypes (the
physical three dimensional cluster) instead of their geno-
types (a string of Cartesian coordinates) [8]. The reason
this change was so significant (leading them to discover nu-
merous new minima [8]) is due to the fact that in 3D space, a
section of the cluster would contain only neighboring atoms.
In a string of numbers, consecutive coordinates do not neces-



sarily correspond to nearby atoms, and thus cutting a piece
of such string would likely not correspond to cutting a con-
tinuous section of the cluster, thus leading to a less princi-
pled crossover recombination. Deaven and Ho’s crossover is
often referred to as “Cut and Splice” (C&S) [26] or “Cut and
Paste” [13].

The BCGA is a well known and widely used cluster-
optimizing GA designed by Johnston [18]. The BCGA has
been used to optimize clusters of different types and sizes,
and has been combined with different energy optimization
methods over the years ([17], [24], [13], [14], [9], [4], [30], [6]).
When it comes to bimetallic clusters, the lack of atom relo-
cating mutations in the BCGA causes it to rely heavily on
the L-BFGS local minimization procedure [20] to find the
lowest energy clusters. The CEO-GA proposed in this paper
(and detailed in section 3) borrows BCGA’s atom permuta-
tion mutation [18], cluster energy calculation (Gupta poten-
tial), dynamic energy scaling (equation 4), and exponential
fitness function (equation 5), while excluding BCGA’s local
optimization procedure (L-BFGS), and incorporating two
new mutations operators (Local-S and CoM-S).

2.2 Gen-C&S and H-C&S crossovers
In the aforementioned Deaven and Ho’s C&S, given two

parent clusters, two random planes are chosen, each pass-
ing through the center of mass of one of the parents, and
the clusters are split in half. A child is generated by com-
bining the top half of one parent with the bottom half of
the other. If the resulting child does not have the correct
number of atoms, the parent clusters are translated by the
same amount in opposite directions, perpendicular to their
cutting plane, and splicing is repeated [8]. The BCGA uses
a variation of C&S, where each parent cluster is randomly
rotated about two perpendicular axis before being cut by a
horizontal plane, and subsequently spliced to form a child
cluster [18].

In 2008, Pereira proposed a modified version of C&S [8],
named the Generalized Cut and Splice (Gen-C&S)
crossover [26], and showed it to outperform the C&S when
tested on a steady-state GA evolving Morse clusters [27].
Pereira also successfully applied this crossover to a gener-
ational GA [26]. The main advantage of Gen-C&S is that
it removes an artificial constraint imposed by C&S: the cut-
ting plane creates an arbitrary division between atoms, such
that an atom that is further from some other atom might
be grouped with it during crossover because a closer atom
ended up on the opposite side of the dividing plane. Ad-
ditionally, Gen-C&S does not require rotating the parents
prior to crossover.

In Gen-C&S crossover for two clusters (P1 and P2) of size
µ, a cut point (CP) is chosen as one of the atom locations
in P1. A random number S (between 1 and µ − 1) is cho-
sen, and the S atoms in P1 closest to CP are copied into a
child cluster. Then, the remaining µ − S atoms are copied
into that child from P2, starting with those closest to CP.
After all atoms in P2 have been considered for inclusion, if
the child cluster still has less than µ atoms, it is completed
with randomly placed atoms. For a graphic depiction of this
operator, please refer to [26].

To adapt the Gen-C&S to bi-metallic clusters, Pereira de-
vised the H-C&S crossover and used it to evolve Binary
Lennard-Jones clusters [25]. H-C&S behaves almost iden-
tically to Gen-C&S with one distinction: after copying the

Parameter Cu-Cu Cu-Au Au-Au

A 0.0855 0.1539 0.2061
p 10.960 11.050 10.229
r0 2.556 2.556 2.884
ζ 1.2240 1.5605 1.7900
q 2.2780 3.0475 4.0360

Table 1: Gupta potential parameters for Cu-Au clusters.

first S atoms from P1, an atom from P2 is copied only if the
child cluster still requires atoms of that type, thus maintain-
ing the desired cluster composition [25].

The minimum allowed inter-atomic distance is half of the
ideal distance as defined by the r0 Gupta potential value,
provided in section 2.3. If any two atoms are much closer
than their ideal distance, the potential repulsive energy be-
comes too large [27], which confounds the evolutionary pro-
cess. Thus no atoms closer than 0.5 ∗ r0 to any other atom
already in the cluster can become part of said cluster. H-
C&S crossover observes this rule when creating a child clus-
ter, only allowing new atoms into the cluster if their location
is further than 0.5 ∗ r0 away from every atom already in the
cluster [27].

2.3 Gupta Potential
As mentioned earlier, the Gupta many-body potential [5]

is a widely used heuristic for modeling the inter-atomic in-
teractions within a cluster and for calculating its potential
energy in order to avoid the computationally expensive ab
initio calculations. The Gupta parameters are strictly de-
pendent on the types of atoms composing the cluster, and
are derived empirically based on the second moment approx-
imation to tight-binding theory [24].

The Gupta potential energy of a cluster, designated as
(Vclus), is composed of a repulsive (V r) and an attractive
(V m) terms, which are obtained via summing over the in-
teractions of each pair of atoms in the cluster, as defined in
equations 1, 2, and 3.

Vclus =
N∑

i

{V r(i)− V m(i)}, (1)

V r(i) =
N∑

j

′A(a, b)exp

(
−p(a, b)

(
rij

r0(a, b)
− 1

))
(2)

V m(i) =

[
N∑

j

′ζ2(a, b)exp

(
−2q(a, b)

(
rij

r0(a, b)
− 1

))]1/2

(3)∑ ′ in equations 2 and 3 indicates that the summation is
to be performed over all atoms j, except for j = i [7] i and
j are atoms and a and b are their types. N is the number of
atoms in the cluster. The values of the Gupta parameters A,
p, r0, ζ, and q used in this work were obtained from [5], and
are listed in table 1. Thus A(Cu,Au), for example, is the
value of the Gupta parameter A for the interaction between
an atom of Copper and another of Gold, as experimentally
fitted for the reference bulk structure.



3. CLUSTER ENERGY OPTIMIZING
GENETIC ALGORITHM (CEO-GA)

The CEO-GA is derived from the BCGA, which (in con-
junction with other techniques) has proven capable of cor-
rectly discovering previously known optimal energy configu-
rations [18]. The CEO-GA makes use of the successful ge-
netic operators present in the BCGA, while also improving
upon some of BCGA’s shortcomings. We aim to increase
the efficacy of the underlying GA itself so as to decrease
its dependence on potentially detrimental local optimization
techniques.

The CEO-GA is a (µ + λ) generational GA, in which a
population of µ parents generate λ children, which (along-
side their parents) become candidates for the next genera-
tion. Only parent clusters are eligible for mutation. Newly
generated offspring do not get mutated, thus allowing the
GA to assess clusters generated by crossover before further
alternation. Once all the candidate clusters are collected,
the next population is chosen via modified roulette-wheel
selection [10]: a cluster is chosen at random and accepted
for mating if its dynamically scaled fitness (see equations 4
and 5 in section 3) is greater than a randomly generated
value between 0 and 1. The same method is also used se-
lecting parents for CEO-GA’s H-C&S crossover [25]. The
CEO-GA explicitly incorporates elitism by copying the best
two candidate clusters into the next generation.

The bounding box is the legal area that atoms can occupy,
i.e. any time an atom location is randomly generated, the
new coordinate values are chosen between 0 and length of
the box edge. Following Johnston’s and Darby’s work [7][18],
for a cluster of N atoms, each edge of the bounding box is set
to be N1/3 scaled by the ideal distance between two atoms
(Gupta Parameter r0), ensuring that the volume of the box
increases linearly with cluster size. Bimetallic clusters usu-
ally have three different values for r0, one per each type
of interaction (e.g. Cu-Cu, Cu-Au, Au-Au). Consequently,
the bounding box in this work is set to 0.05N1/3∗largestR0,
where largestR0 is the maximum ideal distance between two
atoms of the present types. In Cu-Au clusters, that distance
is the r0 between two atoms of Gold and is equal to 2.884
(view table 1). Following Pereira’s work [27], all atoms in
the first generation are ensured to be at least 0.5 ∗ r0 away
from each other. This rule is also observed when filling a
cluster with random atom locations after an incomplete H-
C&S crossover operation.

The CEO-GA uses a modified atom permutation muta-
tion [18], which has been shown to lead to a higher chance
of finding the global minimum and to increase the repro-
ducibility of the obtained results [18]. The atom permuta-
tion mutation consists of swapping the types of one or more
pairs of atoms. In CEO-GA, the number of atom-type swaps
per mutated cluster corresponds to 20% of the cluster size,
instead of BCGA’s 30%. This change results in a more grad-
ual evolution, allowing the GA to assess the value of smaller
changes one at a time.

Additionally, the CEO-GA incorporates two new muta-
tion operators inspired by the spherical nature of nanoalloy
clusters: the Center of Mass Spherical mutation (CoM-S)
and the Local Spherical mutation (Local-S).

1. The Center of Mass Spherical mutation
(CoM-S) is designed to quicken the search for opti-
mum configurations by rotating an atom about the

cluster’s center of mass (CoM). The CoM is calculated
as the weighted sum of its atoms’ coordinates, divided
by the total mass of the cluster2. The vector from
the CoM to the atom is calculated and converted to
spherical coordinates (ρ, θ,φ)3. The distance between
the atom and the CoM is preserved by keeping ρ con-
stant, while selecting some combination of θ and φ
angles to rotate the atom about the CoM. Once the
new angles are obtained, the vector (ρ, θnew,φnew) is
converted to its Cartesian equivalent and added to the
CoM location. The atom is then relocated to this new
position.

2. The Local Spherical mutation (Local-S) is
designed to make small changes to the locations of 10%
of a cluster’s atoms. A small vector of spherical coor-
dinates (ρ, θ,φ) is created, and its Cartesian equivalent
is added to the current location of an atom. Angle θ
can take on any value in the range of 0◦ − 180◦, φ can
be 0◦ − 360◦, while distance ρ is the absolute of a ran-
dom value obtained from a Gaussian distribution with
a mean of 0 and a standard deviation equal to 5% of
the side of the bounding box.

Given the spherical and fairly tight nature of Cu-Au clus-
ter geometries (as can be seen in figure 1), ensuring that
the “greater than 0.5 ∗ r0” rule is observed can be difficult.
A GA could get stuck repeatedly selecting new random co-
ordinates, as most locations would be disqualified for being
too close to pre-existing cluster atoms. To avoid re-selecting
indefinitely, for a cluster of N atoms, we cap the number
of tries at N ∗ 10 per each newly generated location. Once
the maximum tries have been exhausted, a Local-S muta-
tion is repeatedly performed on each new atom that is too
close to atoms already in the cluster, until the minimum
distance is satisfied. Note that while the Local-S muta-
tion uses the bounding box to calculate the increment ρ,
it does not itself obey the boundaries of said box in order to
quicken compliance with the minimum distance rule. Thus,
the resulting atom coordinates may place the atom outside
of [0, N1/3 ∗ largestR0] range.

The CEO-GA mutation rates are as follows: for any given
cluster of size N, an atom permutation mutation has a 10%
chance to occur, in which case 0.2 ∗N label swaps are per-
formed. The CoM-S mutation also has a 10% chance to
occur, and causes each of the atoms to have a 10% chance
to rotate about the CoM. The Local-S mutation has a 20%
chance to happen, producing a 10% chance to cause a small
spherical permutation of the location of each of the atoms
in the cluster. A cluster can be mutated by all or none of
these mutations. When a mutation does occur, each op-
erator produces a separate mutant cluster, which becomes
one of the candidates for the next generation. This ensures
that the GA will be able to assess potential benefits of each
mutation individually.

An optional cluster relocation mechanism was designed
for the CEO-GA, such that the entire cluster is re-centered
around the origin, i.e. the CoM of the cluster ends up at

2The atomic mass of Cu is 63.546, and the atomic mass of
Au is 196.96655.
3In this paper, spherical coordinates (ρ, θ,φ) are used as is
customary in the physics field: ρ indicates radial distance, θ
indicates polar angle, and φ indicates azimuthal angle.



(0,0,0). While the mechanism did not provide any advan-
tage for the tested clusters, it could be beneficial for more
sparse cluster geometries that require more spacious bound-
ing boxes. Re-clustering around the origin would ensure that
atoms from parent clusters are combined in a principled and
correlated manner during crossover.

Energy (Vclus) is calculated using the Gupta potential [5]
as detailed in section 2.3. Energy is scaled dynamically ac-
cording to equation 4, where ρi is the scaled energy of a
cluster i, Vmin is the lowest Vclus in the current population,
and Vmax is the highest.

ρi = (Vi − Vmin)/(Vmax − Vmin) (4)

This results in a ρ value of 0 for the best cluster, and 1
for the worst cluster in the population.

The fitness of a cluster (fi) is calculated using the ex-
ponential fitness function, as defined by Johnston [18] and
provided in equation 5.

fi = exp(−αρi) (5)

Parameter α determines how fast fitness drops as energy
increases, and is set to α = 3 as in the original work [18].

4. EXPERIMENTAL SETUP
All experiments in this paper are performed on Cu-Au

clusters. Ample data is available on the best known con-
figurations of Cu-Au clusters ([7], [18], [9], [3], [22]), thus
making them a suitable basis for comparison between clus-
ter evolving GAs. Of particular relevance to this paper is the
research conducted by Darby et al. [7], as it allows a direct
comparison between Cu-Au clusters evolved with BCGA
and those evolved with CEO-GA. However, as Pereira has
already shown the Gen-C&S to outperform Deaven and Ho’s
C&S [27], the CEO-GA’s performance is tested directly
against our own implementation of the BCGA, from here
forward referred to as BCGA−: a BCGA without L-BFGS
local optimization and augmented with Gen-C&S crossover.
These modifications are made in order to verify that the
CEO-GA offers benefits beyond the inclusion of Pereira’s
crossover.

Given the lack of location-changing mutations in the stan-
dard implementation of BCGA for bimetallic clusters [18],
we also conducted tests on the BCGA− augmented with
Pereira’s Sigma mutation (from here forward referred to as
the BCGA+). In the Sigma mutation, the new position of
an atom is the sum of its current position and a random
value obtained from a Gaussian distribution with a mean
of 0 and a standard deviation σ, which, following Pereira’s
example, is set to 5% of the length of any one of the edges
of the bounding box (defined in section 3)[27].

In this work, the BCGA−, BCGA+, and CEO-GA are
tested on their ability to evolve the best known pure (Cu(N),
Au(N)) and doped (CuAu(N−1), Cu(N−1)Au) clusters. Fol-
lowing the example of [7] and [18], we also evolve stoichio-
metric nanoalloy clusters with the composition of common
stable bulk Cu-Au alloy phases, i.e. those with Cu to Au
atom ratios of 3, 1, and 1/3 [7]. The three GAs are tested
with a population size µ=75 and a crossover rate of 0.8.
The CEO-GA has a mutation rate of 0.1 for its atom per-
mutation mutation as well as for its CoM-S mutation, and
a mutation rate of 0.2 for its Local-S mutation. In order to

provide an equal number of mutation children to both the
CEO-GA and the BCGA−, the BCGA−’s atom permutation
mutation rate was increased to 0.4. As the BCGA+ incor-
porates an additional mutation type (sigma), its mutation
rates were set to 0.2 for the atom permutation mutation and
0.2 for the sigma mutation. All experiments were subjected
to 50 runs of 25000 generations each. The findings are pre-
sented in table 2 and consist of the best and average cluster
energies for each of the three tested GAs, as well as their
success rates. Success rate is defined as the percentage of
the 50 runs that evolved a cluster whose energy is within 0.1
of the minimum cluster energy reported by Darby et al. [7],
also presented in table 2 for ease of comparison.

5. RESULTS AND DISCUSSION
We summarize our results in table 2: BCGA− results are

shown in columns 3, 4, and 5, BCGA+ in columns 6, 7, and
8, and CEO-GA in columns 9, 10, and 11. Results from
the original BCGA (with L-BFGS optimization) provided
by Darby et al. in Table II of [7] are displayed in column
2 of table 2. In figure 2 we provide an example of a 3D
visualization of the lowest potential energy clusters evolved
by the CEO-GA, as well as the corresponding cluster evolved
by the BCGA and reproduced from Darby et al. [7].

(a) CEO-GA Best (b) BCGA’s Best [7]

Figure 2: Comparison of Cu6Au6 clusters evolved by the
CEO-GA and the BCGA4 Dark and light spheres repre-
sent atoms of Cu and Au, respectively. Both GAs evolved
Cu6Au6 clusters with potential energy equal to -35.40, as
can be seen in table 2. The depicted atomic radii are ar-
bitrary, as only the atoms’ centers are taken into account
during the search.

As can be seen in table 2, the best structures reported by
Darby et al. are consistently found accurate to two decimal
places by the CEO-GA (column 9) within the span of 50
runs. Notice that since we are minimizing potential energy,
lower (more negative) values are better. For example, for
the Cu3Au9 cluster Darby reports the best found energy to
be -37.725549, while the energy of the best cluster found by
the CEO-GA is -37.724 (which is only 0.00155 away). Values
that differ from the known minimum by up to 0.1 (and thus
represent successful runs) were found by 26% of the CEO-
GA runs. It is unknown, however, how often values near
the optimum were found by Darby’s implementation of the
BCGA.

4Reprinted with permission from S. Darby, T. V. Mortimer-
Jones, R. L. Johnson, and C. Roberts. Theoretical study of
Cu-Au nanoalloy clusters using a genetic algorithm. Jour-
nal of Chemical Physics, 116(4):1536-1550, 2002. Copyright
2013, American Institute of Physics.



BCGA BCGA− BCGA+ CEO-GA
Cluster Best Best AvgBest (stdv) S.R. Best AvgBest (stdv) S.R. Best AvgBest (stdv) S.R.

Cu12 -30.277969 -3.651 26.6296 (9.66) 0% -30.233 -29.6094 (0.39) 24% -30.277 -29.9218 (0.37) 50%
Au12 -38.922569 110.389 190.2884 (30.76) 0% -38.844 -38.5477 (0.19) 18% -38.921 -38.6899 (0.18) 36%
CuAu12 - 94.326 228.0147 (36.67) 0% -43.055 -41.8591 (0.62) 14% -43.130 -42.1157 (0.65) 20%
Cu12Au - 32.701 54.61392 (10.48) 0% -34.973 -33.8937 (0.69) 22% -35.042 -34.4089 (0.72) 52%
Cu3Au9 -37.725549 50.125 95.94986 (21.84) 0% -37.671 -36.8992 (0.39) 10% -37.724 -37.1537 (0.38) 26%
Cu9Au3 -33.112689 14.136 43.24580 (11.52) 0% -33.080 -32.5323 (0.32) 14% -33.112 -32.7186 (0.33) 38%
Cu6Au6 -35.402163 24.458 63.69496 (15.46) 0% -35.341 -34.7210 (0.31) 8% -35.401 -35.0093 (0.30) 28%

Table 2: GA performance comparison between BCGA (as reported by Darby et al. [7]), BCGA− (BCGA without L-BFGS
and using Pereira’s H-C&S crossover [25]), and BCGA+ (BCGA without L-BFGS, using Pereira’s H-C&S crossover and Sigma
mutation), and the proposed CEO-GA. An evolved cluster is considered a success if by the end of a run its energy corresponds
to BCGA’s ‘Best’ energy (lowest cluster energy obtained by Darby et al. [7]) up to the first decimal place. Success rate (S.R.)
represents a percentage of the 50 runs that evolved successful clusters (those with values within 0.1 of the minimum cluster
energy reported by Darby et al. [7]) after 25000 generations of the GA. The best and average-best cluster potential energies,
as well as standard deviation (stdv), are also reported out of 50 runs. Minimum energy values for doped clusters were not
provided in the original work by Darby et al. [7]; therefore, the success cases for CuAu12 and Cu12Au are estimated to be
those within 0.1 of CEO-GA’s best, given that in all other tested cases these values matched BCGA’s ‘Best’ (column 2) up
to the first two decimal places.

While not every run finds the known global optimum con-
figurations, the CEO-GA success rates are much higher than
those of BCGA− and BCGA+, indicating that it approxi-
mates the global optimum significantly more frequently (1.4
to 3.5 times more), and the average best energies are closer
to the known global optimum. The ability of the CEO-GA to
accurately find global optima without the help of local opti-
mization tools such as the L-BFGS is valuable because local
optimization techniques can often cause premature conver-
gence on a local optimum. GAs, on the other hand, are
generally better suited for finding global optima. The CEO-
GA relies solely on crossover and mutation for its search,
lowering the risk of getting trapped in local optima (as can
be seen by the higher success rates in table 2), while steadily
approaching the global best, potentially paving the road for
finding previously unknown global minima.

The BCGA− is included for reference only, as in absence
of local minimization BCGA becomes unable to evolve even
approximate solutions. This is a result of two of its charac-
teristics: (1) the BCGA always picks the best µ solutions to
become members of the next generation, which may cause
premature convergence; (2) the BCGA does not itself pos-
sess the ability to make small adjustments to atom locations,
and thus cannot narrow in specific coordinates, relying on
H-C&S crossover for any atoms relocation away from its
original randomly generated coordinates.

6. CONCLUSIONS
In this paper, a new cluster potential energy minimiz-

ing GA is presented: the Cluster Energy Optimization Ge-
netic Algorithm. The CEO-GA is designed to improve upon
the shortcomings of its predecessor, the BCGA, which re-
quires a local minimization as it does not itself offer any
atom relocating mutations. Additionally, the BCGA always
picks the best µ solutions from amongst parent clusters,
crossover offspring, and mutations, causing fast but often
premature convergence such that every cluster in the pop-
ulation becomes identical to every other after just a few
generations. These heavy-handed techniques cause high se-
lection pressure, promptly pruning the population of all but
the best-so-far cluster, making the BCGA highly suscepti-

ble to dangers of the low hanging fruit that is local optima.
The CEO-GA combines BCGA’s atom permutation muta-
tion [18], Pereira’s H-C&S crossover [25], and two new muta-
tion operators designed to slowly move atoms closer to their
idea location, thus paving a steady evolutionary path to the
global optimum.

The CEO-GA is tested on pure, doped, and stoichiomet-
ric Cu-Au clusters, and is shown to outperform both the
BCGA− (Johnston’s BCGA without L-BFGS local mini-
mization and with Devon and Ho’s C&S crossover [8] re-
placed by Pereira’s H-C&S crossover [25]) as well as the
BCGA+ (i.e. the BCGA− combined with Pereira’s Sigma
mutation [27]) in terms of success rate and ability to evolve
the best known configurations. These results show that the
CEO-GA, while not itself depending on local minimization,
achieves results comparable to those previously obtained
only via combining a GA with local optimization techniques.
Since relying on local optimization can often lead to getting
stuck on suboptimal clusters, a self-sufficient GA may not
only possess a higher chance of finding global optima, but
may also allow for the discovery of yet unknown lower en-
ergy cluster configurations. The CEO-GA’s higher success
rates (compared to other cluster evolving GAs without local
optimization) also improve the reliability of finding a good
cluster within fewer runs.

7. FUTURE WORK
Johnston devised an optional mechanism for maintaining

diversity in BCGA’s population through removing clusters
whose energy was not sufficiently different from other clus-
ters in the population [18], although it was unclear what
effect this mechanism had on the GA’s performance. CEO-
GA could benefit from a similar diversity mechanism. How-
ever, we propose considering a clusters’ geometric qualities
as a measure of similarity instead of the clusters’ poten-
tial energy. One approach could be to implement “specia-
tion”based on clusters’ atomic configuration, similar to that
devised by Stanley for the NeuroEvolution of Augmenting
Topologies (NEAT) algorithm for evolving structure [29].
Additionally it would be interesting to test the proposed
optional relocation of the center of mass to the origin before



crossover-recombination on materials with less tight clus-
ters. We hypothesize that having large empty sections of
the bounding box could hinder crossover if the parents’ cen-
ters of mass are distant.

It is possible that while the CEO-GA was able to find the
known optima for the tested clusters, when evolving larger
clusters, not using an external (to the GA itself) local op-
timization method such as the L-BFGS could prohibitively
slow down evolution. On the other hand, using such local
optimization combined with an improved base genetic al-
gorithm could produce results quicker than previously used
methods. To test this theory, the authors intend on apply-
ing the CEO-GA in conjunction with L-BFGS to clusters of
sizes up to 50 atoms. It would also be interesting to com-
pare the structures evolved with the CEO-GA with those
obtained through ab initio calculations.
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