Variation as an Element in Multi-Agent Control for Target Tr acking

Cortney Riggs and Annie S. Wt

Abstract— This work investigates the impact of inter-agent Inter-agent variation may be dynamic and change over time
variation on the performance of a multi-agent system _based [3], [4], [15] or remain static throughout a run [13], [14].
control system. The control system is composed of a multi-agt Several classes of algorithms use the aggregation of mul-

team and aggregates the actions of the individual agents ohé¢ . ) o .
team to form a single output. In the process, this approach tiple sources to deal with variation. Collaborative cohtro

attempts to use error and variation that naturally occurs in  algorithms combine inputs from multiple agents (including
physical systems to the system’s advantage. We apply this it~ human agents) and attempt to exploit the strengths of each

agent control system to a multiple task allocation problem agent[17], [18], [19]. Consensus control algorithms oefit
and present an analytical model with which we can study the such as those used in distributed sensor networks [20],

conditions under which such a system is expected to stabiéz . . .
We then compare the expected behavior of the analytical modie [21], [22], [23] use the aggregate information from mulépl

with an empirical agent-based simulation applied to a trackng ~ “@gents” to determine signal values in the presence of noise
problem. Similar to consensus algorithms are a number of approaches

that use multi-agent aggregation to filter out noise for tobo
l. INTRODUCTION control [24], [25], [26], [27].

This work investigates the impact of inter-agent variation Previous work finds that inter-agent variation in a multi-
on the performance of a multi-agent system based contra@gent system can allow for more efficient responses by the
system. In this approach, the control system is composed ffstem to changing demands in a single task problem [12].
a multi-agent system consisting of a team of decentralizaffe extend that analysis to multiple-task allocation protde
agents which do not communicate directly with each othefnd present an analytical model with which we can study the
Variation is introduced into the system in the form ofconditions under which such a system is expected to stabi-
small errors or differences in individual agent percepiof lize. We then compare the expected behavior of the analytica
common goals. Each agent acts independently in responseigdel with an empirical agent-based simulation applied to a
outside stimuli and the actions of all agents are aggregatedtracking problem. The contributions of this work are to gain
form a Sing|e control System output_ As a result, this agenﬁ. better understanding of the effects of variation on multi-
based control architecture is expected to inherit many ef trgent system coordination and to demonstrate potential use
robustness qualities that are typically expected of nageént Of such systems as a control system.
systems. More interestingly, we believe that this approach
provides a natural way of dealing with (and even taking

advantage of) naturally occurring errors and variatiorst th e define the tracking problem to be the attempt by a
exist in physical systems. tracking unit to follow the movements of an object over time.

Inter-agent variation is common in natural systems, suchliS problem can be described as a discrete autonomous
as biological [1], [2], [3] and social systems [4], [5], [6], dyn:_;\m|c system. The position of the object is deflned_as
[7], [8] and appears to be an essential element in hof d|s_cret_e func_tlon of time. The gorrespondlng velochy
complex systems work [9], [10]. If we consider the numbefunction is the input to our dynamic system. The multi-
of ways that a team of agents may respond to stimuf9ent systemis the .control unit to our dynamic system. The
we find that variation in the behaviors or reactions of thgoal is for the multi-agent system as a whole to respond
individual agents lead to a larger response set for the tsam@PPropriately to the input, even while the agents that make
a whole. Thus, having a variety of responses can potentiagﬁp the multi-agent system act independently and without
benefit the system as a whole by providing a wider range &iréct communication. The g(_)ntrol system response updates
system responses to external stimuli [11], [12]. If the syst the current belief in the position of the object.
response is what we are in'Ferested in, variation in the agerf Representation of the problem
that make up the system will lead to a more flexible system.

Engineered multi-agent systems such as robot teams ¢
generate better team performance by using variation
improve agent coordination in the team [13], [14], [15],]16

Il. FORMAL DESCRIPTION

ﬁAn object’'s position function has components in each
mension. Thus, if there arg € N dimensions, the overall
position function is defined by the vector

d(t) = (di(t),d2(t),...,dg(t)". 1
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Dynamics grant #100005SMC. o We further break down the representation of the tracking
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other represents motion in the negative direction. Thus, favhere p; is the mean of the response thresholds for all
a ¢ dimensional tracking problem there will be = 2¢ of the agents for task and ¢; is a small error value
tasks. The state vector of all of the tasks that make upthat represents an error in an agent's perception of when

g-dimensional tracking problem is defined as it needs to contribute to task The valuee;; is drawn
- from a Gaussian distribution defined By (0,0;). We use
x(t) = (w1(t), w2(t), .., wn(t))" (2)  a Gaussian distribution to generate the error valygsn

In our problem,n = 4, 1 corresponds to the positive order to model error distributions that potentially exist i

direction of the x-axis;» corresponds to negative x-axisthe _physic_al world. In our model, the error in perception is
movement;; corresponds to positive y-axis movement, angt@tic: which means that; is constant throughout a run.
24 corresponds to negative y-axis movement. Without loss of generality, we set the means of the response

The velocity of the object serves as the basis for the inplgtgresholds of all of the tasks to zero. We assume that alstask
signal, u, to the dynamic system. For an object movindﬁa\’e an identical standard deviation value. An agent will ac
accor(,din,g to Equation 1, the velocity vector is on a task when the state of the task falls below the agent’s

response threshold for the task. If we have only one task
d'(t) = v(t) = (vi(t),va(t),...,v,(t)7" (3) whose state value is and the input for a given timestepus
then the proportion of agents that are expected to act in that

Velocity in a dimensiory attimet—1, v;(t—1), is assigned (imestep is defined by the cumulative distribution function

to the appropriate task input signal,(t), based on whether - -
the velocity is moving in the positive or the negative direat Qlz —u) = — / = )
in the dimensionj. Our input signal mapping function is oV2T Jo—u

s If the problem consists of more than one task, then it
Kvin)2(t=1) ifiis odd andiii1)2(t=1)>0 pocome possible to have more than one task fall below
uit) = K |vio(t=1)|  ifiis even andg;)2(t—1)<0  an agents task response thresholds. As a result multiple
0 otherwise. tasks will be expecting a contribution from the same agent.
(4) Because an agent can only contribute to one task in each
where K scales the velocity measurement to the timestefimestep, the actual expected contributions that a task re-
size. We assume the timesteps are on the same scale with ¢ge&/es will be less than the full amount that it expects due to
velocity measurements. The input signal to a task is alwaysss of contributions to other tasks. Agents select ranglom|
positive because we represent the positive and negatiitém among the tasks with states below the agent’s response
directions in a dimension using separate tasks. Thus, tiieresholds. In order to model this as a dynamic system, we
position change represented in the states(is— 1) —u(Z). assume that the average response over multiple timestéps wi
be evenly divided among the tasks according to their need.
We are concerned with how the dynamic system is trans-
The multi-agent system is the control system for ouformed in each timestep by a transformation arr&y,The
dynamic system. Applied to the tracking problem, the goatntries of the transformation arrag, are dependent on the
of the control system is keep the task states of the dynanstates of the tasks relative to one another. The expected
system at a constant value. Constant values imply thatoportion of agents that will act on each task in timegtep
the multi-agent system is properly responding to the inpu, is
u. Thus, the task states representing the problem are the z = BX, (6)

cumulative difference between the input obtained from the

obiect motion and the response by our multi-agent contr(lﬁ the vector of the expected proportion of contributions fo
J P y 9 each task when the other tasks are not considered, where

B. Multi-agent system

system.
A set of m decentralized agents act independently with Q(z1 — 1)
no direct communication with each other. At each time step, ) Q(x2 — u2)
an agent decides whether or not it needs to act. If there are X = : : @
multiple tasks needing action, the agent must also decide on Qan — un)

which task to act. Agents act by contributing a set amount, i i .
¢, to the state of a task in response to the input sigaal, In orde_r to find £, we be_gln by_deflnmg t_he expected
(this could also be seen as a weighted vote where all tfECPOrtion of agents that will contribute to taskas

agents have the same weight on their votes). Each agent can 2 = B(x',i) + C(x7,1), (8)
only contribute to one task in a given time step; each agent
has the ability to act on any task in a given time step. Th\ghere

aggregate of all agent contributions in a timestep forms the B(x',i) =
response of the multi-agent control system for that tingeste

Each agentg,, has a response threshold for taskat is 1Exploratory work has shown that random selection performsvauld
defined as be desired for a tracking problem when compared to otherctate
mechanisms, such as choosing a task based on the largesipartmal

aj.target; = p; + €5, difference between the task current and target values.
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is the expected proportion of the contribution to the tasthwi array. For example, if, in the ordered vectgrthe condition
the highest state value which will be divided among all the:; — u; < 2 — us = x5 — uz < x4 — uyg IS true, then we

tasks and Dix ) can describe the transformation array as
- X,J
= _ 1 1 1
Cxi= Y { w<x-,j>] (10) L
x; <) 0 = 0 -L
. . . E= 3 1 112 (16)

calculates the expected proportion of the contributiort tha 0 0 3 2
task i will receive while taking into account contribution 00 0 g4

loss to the other tasks. In order to calculdté¢x’,i), we When all the tasks states are equal,can be defined as
look at the intervals defined by the task states, and ca&ulajiagonal array
the expected proportion of contribution available withacle
interval.

The functionD(x, j) calculates the expected proportion E=
of contribution in the interval from tasks state to the next
highest task state value

(17)

OrirO O
O O O

O O ORI
O ORIm O

o Thus, even though the dynamic system has variable coeffi-
D(x’,j) = zj:ineit, (11) cients (changing entries iR), the transformation array can
=T always be re-written as an upper triangular array by simply
where z;,.,, = max,. <o (z7) indicates the proportion re-prdering th_e tasks’ state vgctor_ _by non-incre_gsingqsilu
Q(z,) for the taskg with the next highest state value from This upper triangular array simplifies the stability analys
task j. The summation in the denominator prevents repe&r fixed points, under the condition that the state vestor
inclusion of the same contribution determined byx",j) is ordered.
for all tasks with the same state value as tgskn the

. ; ) C. Putting it all together
summation of the terms defined @(x, ). h h defined bl . d
The functioniy(x", j) counts the number of tasks whose Now that we have defined our problem representation an

state value is greater than or equal to that of task the decision making process of the multi-agent system, we

because these are the tasks to which taskill lose agent can combine both into a discrete dynamic system repre-
contributions sentation of how the tasks states change over time. In this

DX, ) = Z 1 (12) form, we can analyz_e_ the system to understand th_e behavior
and determine conditions for stability. The dynamic system

mapping of the states of the tasks is

For example, if all four tasks have unique state values, .

such thatr; —u; < 22 —us < r3 — Uz < Tyq4 — Uy, then we X(t) = X(t - 1) - u(t) + aE(X (t))v (18)

have L ay—ay | a7 wherea = m x c is the total contribution the multi-agent

#i=eh T 2 T JEE T 4 system can make at any given timestep. Since the update to
e 'y (13) the belief in position by the tracker is the sum of the agent

~

St Zf contributions, the output mapping for the dynamic system is
4
Sevarating the t btai ! y(t) = y(t — 1) + adz(t), (19)
eparating the terms, we obtain
w4 where A is the aggregating; x n array combining the
T~ 276 I2 directional responses into the resulting dimensionaltjoosi
g — 5 - IKS - %—3 _ (14) change. The goal is to minimize the difference betwpét)
3 1 andd(t).
= Because the multi-agent system has a finite number of

Agents and the total contribution, is dependent on the
number of agents, the maximum response that the system
can provide is bounded. The control system has the potential

From Equation 14, we can determine that the transform
tion array for this example is

1 1% '% '% to track an object if the total contribution of agents is egiou
E— 0 3 -5 "1z (15) to counteract the sum of the reduction on the set of all
0 0 3 ﬁ tasks. A problem is considered feasible at a time step if the
0 0 0 ¢ relationship
Using the knowledge that this example is based on a vector az Zuz (20)

x that is ordered in a decreasing fashion fremto x4, it is

intuitive that the transformation arraly will always be an holds. For some period of discrete time stefis,t,], a
upper triangular array if we order the vectarEven if some problem is feasible (not necessarily stable) if the retfegiop
tasks have equal state values, fi@cting on the decreasing in Equation 20 holds true during the span of that time period.
ordered vectok™ will still be defined as an upper triangular In this work, we focus on feasible tracking problems.



Il ANALYSIS a fixed point resulting in a re-writte&(z;) as described in

The components of our system (the tasks) are dependeEnqua“On 15, the eigenvalues are

on each other due to the resource constraints of a set number ae—(@i—ui—p)?/2
of agents. Because the tasks in our dynamic system must [Ta- T iodee A) =0 (22)
share the available agent resources, the multi-agentmespo Ti
to a single task can vary dynamically due to the states of the A discrete dynamic system is stable when, for all eigen-
other tasks. Dependency between the components creategahies, )\, . . ., \p, We have,|)\;| < 1. As we can see from
variable coefficient dynamic system, which is generally difEquations 21 and 22, the eigenvalues are always less than
ficult to analyze. Using the knowledge that the tranfornmatioone. Thus, the driving restriction for determining stapiis
array E' can be re-written as an upper triangular array, we ,
can analyze the system using the partial derivatives of the 1 ae”(@wimuimm7/2 > 1 (23)
dynamic system mapping. o\2r -

To analyze the dynamic system, we need to calculate tg\f _ hate—(@—ui—m?%/2 ig | o
fixed points of the system and determine the stability ne oting t _ate is largest af(z; Ui p) =0
the fixed points. Fixed points can be determined by solvin nd solvmg for the parameters of the r_nultl—agent system,
for the statex® = f(x*), where f(x*) is the function e dynamic system is al_ways a_symptotlcally stable for the
describing the right hand side of Equation 18. LinearizatioorOIered states near the fixed poiat, when
of our non-linear dynamic system model can determine under a < o2V, (24)
what conditions the system is stable. The order of the states
at the fixed point is important. If the system is stable afhis is of most concern to avoietperioc? cycles and chaotic
the fixed point, stability near the fixed point will only be behavior in the system. Equation 24 shows how agents’ per-
true assuming the order of the states holds. Responsesc&ptions (and therefore the distribution of the contritli
arbitrary states may not result in orderings the same as tdetermined bya and o determines the sensitivity of the
fixed point. Linearization cannot determine if the system isystem to changes. In fact, the asymptotic stability willha
stable for arbitrary states near the fixed point, let alomeafo @ monotonic convergence for all the tasks when
broad range within the domain of possible state values. An Nor
understanding of the system behavior across arbitrary task a < ov2m.
state values allows for an effective application of the®yst B General system behavior
to a given problerh Thus, we analyze the system with two . .
approaches to attempt understand how the dynamic systen4n an attempt t_o analy_z e the St"?‘b""y_ for arbitrary tas_k
behaves. First, we will do a linearization near the fixed poi states near the fixed point, we will build up an analysis

to determine if there are any conditions that the system E(_)t? a Sl,l_n?le t_aSIT mttol? mu:tlple taskhsyr:stgm. :’r\]/e. begin
stable. Second, we will attempt to show general behavior gyith multiple: single task systems each having their own

the system for tasks starting from any arbitrary state \saluepOpUIatlonS of ag(?nts, then reIa}x the assumption of mytuall
exclusive populations by allowing agents to cross over be-

A. Linearization near the fixed point tween populations, in effect merging the separate poulati
into one.
For a single task, the mapping simply becomes

(25)

Intuitively, a fixed point,x* = f(x*), exists when the
order of the state vector corresponds to the magnitude of

. _ e (=22

the d|stgrbances on the states (the Iarggs’must corre 2(t) = a(t-1) — u(t) + o / T g
spond with the largest response), whé(&) is the function V2T Jai(t1)—u(t)

defining the right hand side of Equation 18. Since the linear (26)

model at any state, as well as at the fixed poisit, is an  This single task system was discussed in work by Campbell
upper triangular matrix when properly ordered, we can fingt al.[12], in which the authors empirically analyzed the sta-

the eigenvalues), with the roots of bility. There, a loose bound on the fixed point, = f(z*),
50 for the system was derived using Chernoff approximation of
det(Jpr — NI) = H (1 + Q_i — )\) (21) the Q-function. Tighter bounds can be found using numerical
z: dz; methods for the equations
where J;- is the Jacobian matrix of the functigf{(x) when x*)? . uy/2m
the sys{em states are ordered in a fashion as described for ( 2) +In(z") +1n <—) <0 (27)
the array in Equation 15 an;iis the identity matrix of size
n. The partial derivative,aé% = ¢(x; — u;, pu,0?), is the and
probability distribution function for state; (this is the partial (z*)? 2 w2
derivative of the terms im). For example, for the system with 0< 5 +In (:c* - W) + In <—> . (28)

2Given the assumption that the problem can be broken downairitsk
based representation. 3k is some integer describing the number of points in the cycle



The stability of the single task system around the fixedhanging “fixed points” during the span of a run. The range
point has already been analyzed above via Equations 23, 24,these fixed points for a task denotes the region to which
and 25, because the derivative of the single task mappitige task state will always be driven. This fixed point region
function, f/(z*), is the left hand side of Equation 23,is not necessarily a bounded stable area since the task could
which was the partial derivative for the task with the latgeshave oscillatory stability. If the stability is monotoniorf
contribution in the ordered system. The fixed point is stablall fixed points possible in the range (or when the available
when|f’(z*)| < 1. When Equation 24 holds, all state valuescontribution is the largest) then the region is a bounddulesta
for the task have a derivative in the rangel, 1] ensuring area (once in it the state will not leave the region unless a
that any feasible system is also stable. change in the input occurs).

Next, assume we have two independently stable single As a result, the range of fixed points for a taslon a
systems, taski and taskj, each with their own multi- constant input is given by the interval
agent control system responding to disturbances. If werela e r@ o e (D)
the disturbance constraints of each individual system to a [27 = fi7 (@7), 27 = £ (a7)] (29)

broader constraint on both systems, such hat, ;w < \yhere fi(j)(mzﬁ) is the mapping function forz;(t) when
2ieij u (similar to Equation 20), we have that one taskpe contribution available to task is «/j. This range of
could potentially be infeasible. However, if the multi-age fjyeq points accounts for all possible combinations of state
response systems are combined, the two individual tasks gy es for the system that include those near the task state
enough resources to be feasible. corresponding to the combined system’s fixed point. Since
Combining the multi-agent responses of two tasks can bgpiirary states are attracted to a region that includes tha
seen as an infeasible task “borrowing” contribution (agent fixed point, there is the potential the combined system will
from the other task. The infeasible task will only take theqnyerge to that fixed point. However, this does not yet prove
contribution it needs to become feasible from the othefa; arpitrary states will converge to the fixed point. This
task. It is assumed that the borrowed contribution will beny shows that the behavior of the system will drive each
distributed on the borrowing task according to its originalf the task states to the region described in Equation 29.
distribution, \'(u;, 03). In order to ensure that the dynamicgther analysis needs to be done to show that the system

system for taski remains stable after it borrows from thejg gaple from arbitrary starting poidtaunder the restriction
other task, the relationship; + (u; — ;) < 0;2v2m, must  hat < 02V/27.

hold. The originally feasible task, tagk will remain stable
sinceo; will decrease (but not by so much that it becomes IV. SIMULATIONS

infeaSible). Additional tasks can be added to the SyStem in We compare the expected behavior defined by our ana-
the same manner, as long as the total contribution availabigical model with an empirical agent-based simulationr Ou
does not exceed;2\/2w for the any taski. experiments investigate two aspects of system performance
Fully combining the two task systems into a single compn a tracking problem. First, we examine the effectivenéss o
bined system allows both sets of agents to act on eithgrmulti-agent control system in tracking different trageas.

task according to the defined distribution of error for thesecond, we examine the robustness of the multi-agent dontro
task. The feasiblility of this combined system is defined bgystem to loss of agents.

Equation 20. The Stablllty of the individual tasks withinsth Our experiments examine two tracking trajectories:
combined system is guaranteed if, for each task, Equation 241) Square trajectory. The target starts at the center of the

holds true. top of the square and moves clockwise. One complete

In the combined system, some of the contribution from — gq,,4r6 is tracked in 360 time-steps.The velocity input
the single multi-agent system that is expected by a single of the object is always 0.5 units per time step= 0.5,
task is also potentially expected by other tasks. Thus, a for a single task

realized contributionby a single task is the amount of the 2) Circular trajectory. The target starts at the twelve
combined system’s total contribution minus the contrititi o'clock position and moves clockwise. One complete
that will go to the other tasks. The contribution lost to athe circle is tracked in 360 time-steps The velocity input
tasks will not destabilize the single task fixed point beeaus will have a constant magnitudéy| ~ 0.39, so sum
lessening the realized contribution available to the tagk w of task inputs is never greater than 0.5 units per time
not violate the condition in Equation 24. However, a lower step, > u(t) < 0.5, V.

realized contribution to a task does affect the fixed point of -

that task calculated in Equations 27 and 28 by lowering its The multi-agent control S-‘/Ste”.‘ |s_made uprof= 100
value. agents. Each agent has a contribution0dfl, so o = 1.

If the loss of expected contribution to other tasks i%nce all problems have a maximum sum of velocities of

thought to remain constant, the state of a task will conver '(‘:” ;hlsQwalntalr&sSit:atéhE;?/;t]egl|si1‘seaslzltb:]eez::;<r)]sesﬁit'[l

towards the fixed point defined by the amount of the realizex E o h Zu't % b? i al oo Th or of
contribution. Since the other tasks will change state \xaalueO eep the system stable with a value ot ©.2. 1he center o
the realized contribution for each task will I'kely Change 4Intuitively it seems possible and experimental work seemidicate

every time step. Thus, a task will be attracted to manyp.
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Fig. 1. This plot shows the object velocity in the negativeediion of the  Fig. 2. This plot shows the object velocity in the negativeediion of the
X dimension (west) and compares that with the expected nsgpof our X dimension (west) and compares that with the expected nsspof our
analytical model and the behavior of our agent-based stinnlaBecause analytical model and the behavior of our agent-based stioolaFor the
each task receives an input signal only when there is moveinethe  same reason as in Figure 1, this plot only has an active ingoalswhen the
corresponding direction, this plot only has an active ingighal when the object has a westward component in its motion on the cireledtory. As
object is moving west on the square trajectory. As a resoét,region of  a result, the region of interest is from timestep- 90 to timestept = 180.

interest is from timestep = 136 to timestept = 225.

Displacement Control
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the agent response thresholds for each task is defined to be 055 b Agent-Based System  +
Analytical Model ---------

w1 = 0.0. Thus, agents’ error in perception is randomly drawn 05 Objeat Displacement

from the distribution defined by/(0, 0.2) for each task. The ¢ o045 |
empirical agent-based simulations use initial task stafes § 0.4
0.6, (three standard deviations) to limit tracking error calses  0-35
by agent contributions to tasks with no initial input. Thes  °3
analytical model uses initial states @f to demonstrate the 0'022

the dynamic system’s attraction towards the proper signal 5| ]
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A. Response effectiveness Time
We analyze the control actions for each trajectory by ex-
amining the directional control actions to determine howl we Fig. 3. Displacement control action is plotted with the atmlisplacement
the task needs are being met and analyze the displacemi@nta run of the circle trajectory. The analytical model dsmement
and heading control to see how well the system is performiri,:gffrrgl\gf’;S o a good app_rox'mat'c-m of the constant displacerof the
jectory. The agent-based simulation displaggrfiactuates with an
on the tracking problem. average difference from the actual displacement of 0.00S per timestep
Figure 1 plots the object velocity, in the negative directio over 50 runs and a standard deviation of 0.007.
of the X dimension (west) for the square trajectory and
compares that with the expected response of our analyti-
cal model and the behavior of our agent-based simulatiogompares that with the expected response of our analytical
Because each task receives an input signal only when thér@del and the behavior of our agent-based simulation. For
is movement in the corresponding direction, this plot onljhe same reason as in Figure 1, this plot only has an active
has an active input signal when the object is moving we#gput signal when the object has a westward component in
on the square trajectory. As a result, the region of inteégest its motion on the circle trajectory. As a result, the regién o
from timestept = 136 to timestept = 225. The analytical interest is from timestep = 90 to timestept = 180. The
model shows asymptotic stability in response to the inpu@nalytical model estimates the westward component of the
Oscillating convergence is caused by an: ¢ ratio not object velocity well. Responses by the agent-based simula-
fit for monotonic convergence. The oscillations are due tton fluctuate around the analytical model’s estimations of
the higher sensitivity of the response near the center of ttiee object velocity. Some ranges, such as around timestep
Gaussian distribution. In the agent-based simulations, tH25, have large fluctuations in the multi-agent system re-
responses find “stable” cycles (in this case a 4-period yycléponses. Near timestep 125, in our clockwise simulations,
centered around the object’s velocity input for the taskhwitthe southward direction also has a velocity component for
the given input. The discrete nature of the multi-agentesyst input. Increased sensitivity at this time period is due te th
does not gaurantee an accurate response for a timestep, ibgtit and spread of agent resources to other tasks causing
the system converges to a stable cycle. Plots for the othiée state of a single task to fall in to the more sensitive eang
three directions are similar. near the center of the agent's response thresholds. The data
Figure 2 plots the object velocity, in the negative direatio for the other three directions is similar.
of the X dimension (west) on the circle trajectory and Figure 3 shows the displacement control action for an
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Fig. 4. Heading control action is plotted with the actualdieg for a run Agents

of the circle trajectory. The analytical model’s headingreation is almost

indistinguishable from the actual heading. The agentdagstem heading Fig. 5. Performance of the multi-agent system tracking eutar moving
has an average difference with the actual heading per tiepecster 50 runs ~ object as total number of agents decreases.

of 0.05 radians with standard deviation of 0.013.

position of the object and the tracking system averaged per
entire run of the circle trajectory. It shows the displacaime 5 completed circle over 50 runs. As agents are removed,
of the object in each timestep and the response of thge performance with respect to differences in tracking and
analytical model and the agent-based system to the objecigtual position initially improves. Maximum distance $if
movement in that timestep. The analytical model's estiomati from about 1.07 at 100 agents to 0.89 at 49 agents. With
of the displacement converges to be close to the constagks than 49 agents, the system performance starts toyapidl
displacement of the object. The agent-based simulation rgegrade. As the number of agents falls below 50, the system
sponse shows some fluctuation from timestep to timeste. infeasible for growing spans of time when the directional
The average difference in displacement per time step ovg|ocities of the object are near their highest sum, around
50 runs is 0.075 units with standard deviation of 0.007 anﬁimgem angles ofr + /2, k € IL.

a max of 0.380 units. The improvement in the performance of the system with
Figure 4 shows the heading control action for an entirggent loss is due to the thinning of the Gaussian distributio
run of the circle trajectory. It shows the heading of thexf agent response thresholds, causing the distribution of
object in each timestep and the response of the analytiGghent response thresholds becomes relatively more uniform
model and the agent-based system to the object's movemeJiform distributions of response thresholds have a linear

in that timestep. The plot implies that heading controfelationship with the task state values. A linear gradient f
performs well. The analytical model's estimations of headi the multi-agent system response results in a more reliable
are nearly indistinguishable from the object’s headinge Thchange in response with change in input.

agent-based simulation heading control again fluctuates fr
timestep to timestep. However, the performance over time V. CONCLUSION

is generally good. The difference in the multi-agent system In this paper, we present a formal model and demonstra-
response heading and the objects heading per time step otten of a multi-agent based control system. The agents in
50 runs averages 0.05 radians with a standard deviation the system are decentralized, acting independently withou
0.013. The break down of the problem implicitly handles the&lirect communication. Agents differ in their perception of

angular change with the task relationships. the system goals and the variation in agent perceptions has a
_ Gaussian distribution. In reaching for the system goals, th
B. System perturbations and tradeoff of small agents contribute discrete amounts to tasks making up the

An observant reader will have undoubtedly noticed thgoals. Summation of the discrete contributions of the agent
comfort of the input demandy, never exceeding half of creates a single control response. The variation in agent
the available contributionr. We next examine how the perceptions in the multi-agent system can create a robust
performance of our system adapts to smaller values;of and adaptable control unit, under sufficient parameters.
how it adapts ag>_ u)/« approaches 1. In effect, this also The performance of the system is dependent on two
examines the multi-agent system’s reaction to perturbatiodefining parameters of the system: the total contribution
such as failure or loss of agents. We will focus on thef the agentsq, and the amount of variation in the form
circle trajectory problem. Each run consists of 100 congglet of the standard deviation of the agent response thresholds,
circles. One agent is randomly selected to fail at the engl. Asymptotic stability in a single task dynamic system
of each complete circle. As agents fail, thevalue of the representation is always present wher< ¢2v/27. These
system decreases. conditions can be extended to a multiple task system, where

Figure 5 shows the average and maximum difference e stability is evident in the drive of the system towards a



region where the fixed point resides. Performance is bettep]
with lower total contribution than the upper limi2+/27 due
to a “thinner” Gaussian distribution of the agents’ resgons

thresholds. Less total contribution has a more uniform dis{5]

tribution of contribution which has a more linear gradient.

Applied to a tracking problem where the tasks are correg
lated with positive and negative direction-based comptsen
of movement, the multi-agent system response estimates IFE%

velocity, or the belief in position change of an object. Is it

estimation of the velocity, the control action by the multi-
agent system appears noisy. The control actions of the-mult{él
agent system produce fluctuating error in estimation of the
position from timestep to timestep; however, theerage
error in position changes remains relatively small. If agiou
estimate is all that is needed this is a sufficient systerp,q,
However, one could shift the mean of the agents’ thresholds
each timestep in attempt to make the fluctuation less erraffl]
and the controlling action more smooth.

The task based representation of the system that we present
in this paper has both strengths and weaknesses. Two Sﬂ?a-]
0

El

[12]

nificant strengths are an inherent memory and robustness
system perturbations. The multi-agent system has a memory
in the form of an accumulation of the difference in the system
responses to the inputs. This memory is particular useful iy
the tracking problem example because it allows the multi-
agent system to make up for past missed contributions to_a
task. The multi-agent system is robust in that loss of agen[t%5]

will not degrade performance as long as the total contidlouti

of the multi-agent system is still enough to handle the input€!
signal, in other words, as long as the system is feasible. 17

Noteable weaknesses include a restriction on the size of
the multi-agent system for good behavior and the lack d#8l

agent loyalty to a task. If the multi-agent system is tooédarg

the system responses are highly sensitive at levels near the
center of the variation of the agents’ response threshold$?
By randomly choosing betweeen tasks with demand, there is
potential for agents to switch between tasks frequentlyctvhi [20]
is inefficient.

A key feature of multi-agent control systems such as the
one presented here is that small inter-agent variationssre [21]
sential to the effective performance of the system as a whole
This feature supports an recurrent and interesting pdisgibi
Whereas most engineered systems perceive manufacturiagj
variation, calibration errors, and other forms of variattbat
are unavoidable in physical systems to be negative featurgs
that must be actively dealt with, collaborative controlteyss
may in fact be able to take advantage of some forms
variation to improve system performance.

(1]

(2]

(31
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