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Abstract— This work investigates the impact of inter-agent
variation on the performance of a multi-agent system based
control system. The control system is composed of a multi-agent
team and aggregates the actions of the individual agents of the
team to form a single output. In the process, this approach
attempts to use error and variation that naturally occurs in
physical systems to the system’s advantage. We apply this multi-
agent control system to a multiple task allocation problem
and present an analytical model with which we can study the
conditions under which such a system is expected to stabilize.
We then compare the expected behavior of the analytical model
with an empirical agent-based simulation applied to a tracking
problem.

I. I NTRODUCTION

This work investigates the impact of inter-agent variation
on the performance of a multi-agent system based control
system. In this approach, the control system is composed of
a multi-agent system consisting of a team of decentralized
agents which do not communicate directly with each other.
Variation is introduced into the system in the form of
small errors or differences in individual agent perceptions of
common goals. Each agent acts independently in response to
outside stimuli and the actions of all agents are aggregatedto
form a single control system output. As a result, this agent-
based control architecture is expected to inherit many of the
robustness qualities that are typically expected of multi-agent
systems. More interestingly, we believe that this approach
provides a natural way of dealing with (and even taking
advantage of) naturally occurring errors and variations that
exist in physical systems.

Inter-agent variation is common in natural systems, such
as biological [1], [2], [3] and social systems [4], [5], [6],
[7], [8] and appears to be an essential element in how
complex systems work [9], [10]. If we consider the number
of ways that a team of agents may respond to stimuli,
we find that variation in the behaviors or reactions of the
individual agents lead to a larger response set for the team as
a whole. Thus, having a variety of responses can potentially
benefit the system as a whole by providing a wider range of
system responses to external stimuli [11], [12]. If the system
response is what we are interested in, variation in the agents
that make up the system will lead to a more flexible system.

Engineered multi-agent systems such as robot teams can
generate better team performance by using variation to
improve agent coordination in the team [13], [14], [15], [16].
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Inter-agent variation may be dynamic and change over time
[3], [4], [15] or remain static throughout a run [13], [14].

Several classes of algorithms use the aggregation of mul-
tiple sources to deal with variation. Collaborative control
algorithms combine inputs from multiple agents (including
human agents) and attempt to exploit the strengths of each
agent [17], [18], [19]. Consensus control algorithms or filters,
such as those used in distributed sensor networks [20],
[21], [22], [23] use the aggregate information from multiple
“agents” to determine signal values in the presence of noise.
Similar to consensus algorithms are a number of approaches
that use multi-agent aggregation to filter out noise for robot
control [24], [25], [26], [27].

Previous work finds that inter-agent variation in a multi-
agent system can allow for more efficient responses by the
system to changing demands in a single task problem [12].
We extend that analysis to multiple-task allocation problems
and present an analytical model with which we can study the
conditions under which such a system is expected to stabi-
lize. We then compare the expected behavior of the analytical
model with an empirical agent-based simulation applied to a
tracking problem. The contributions of this work are to gain
a better understanding of the effects of variation on multi-
agent system coordination and to demonstrate potential use
of such systems as a control system.

II. FORMAL DESCRIPTION

We define the tracking problem to be the attempt by a
tracking unit to follow the movements of an object over time.
This problem can be described as a discrete autonomous
dynamic system. The position of the object is defined as
a discrete function of time. The corresponding velocity
function is the input to our dynamic system. The multi-
agent system is the control unit to our dynamic system. The
goal is for the multi-agent system as a whole to respond
appropriately to the input, even while the agents that make
up the multi-agent system act independently and without
direct communication. The control system response updates
the current belief in the position of the object.

A. Representation of the problem

An object’s position function has components in each
dimension. Thus, if there areq ∈ ℵ dimensions, the overall
position function is defined by the vector

d(t) = (d1(t), d2(t), . . . , dq(t))
T . (1)

We further break down the representation of the tracking
problem by representing each dimension with two tasks. One
task represents the motion in the positive direction and the



other represents motion in the negative direction. Thus, for
a q dimensional tracking problem there will ben = 2q
tasks. The state vector of all of the tasks that make up a
q-dimensional tracking problem is defined as

x(t) = (x1(t), x2(t), . . . , xn(t))
T . (2)

In our problem,n = 4, x1 corresponds to the positive
direction of the x-axis,x2 corresponds to negative x-axis
movement,x3 corresponds to positive y-axis movement, and
x4 corresponds to negative y-axis movement.

The velocity of the object serves as the basis for the input
signal, u, to the dynamic system. For an object moving
according to Equation 1, the velocity vector is

d′(t) = v(t) = (v1(t), v2(t), . . . , vq(t))
T (3)

Velocity in a dimensionj at timet−1, vj(t−1), is assigned
to the appropriate task input signal,ui(t), based on whether
the velocity is moving in the positive or the negative direction
in the dimensionj. Our input signal mapping function is

ui(t) =











Kv(i+1)/2(t−1) if i is odd andv(i+1)/2(t−1)>0

K
∣

∣vi/2(t−1)
∣

∣ if i is even andv(i)/2(t−1)<0

0 otherwise.
(4)

whereK scales the velocity measurement to the timestep
size. We assume the timesteps are on the same scale with the
velocity measurements. The input signal to a task is always
positive because we represent the positive and negative
directions in a dimension using separate tasks. Thus, the
position change represented in the states isx(t− 1)− u(t).

B. Multi-agent system

The multi-agent system is the control system for our
dynamic system. Applied to the tracking problem, the goal
of the control system is keep the task states of the dynamic
system at a constant value. Constant values imply that
the multi-agent system is properly responding to the input
u. Thus, the task states representing the problem are the
cumulative difference between the input obtained from the
object motion and the response by our multi-agent control
system.

A set of m decentralized agents act independently with
no direct communication with each other. At each time step,
an agent decides whether or not it needs to act. If there are
multiple tasks needing action, the agent must also decide on
which task to act. Agents act by contributing a set amount,
c, to the state of a task in response to the input signal,u

(this could also be seen as a weighted vote where all the
agents have the same weight on their votes). Each agent can
only contribute to one task in a given time step; each agent
has the ability to act on any task in a given time step. The
aggregate of all agent contributions in a timestep forms the
response of the multi-agent control system for that timestep.

Each agent,aj , has a response threshold for taski that is
defined as

aj .targeti = µi + ǫij ,

where µi is the mean of the response thresholds for all
of the agents for taski and ǫij is a small error value
that represents an error in an agent’s perception of when
it needs to contribute to taski. The valueǫij is drawn
from a Gaussian distribution defined byN (0, σi). We use
a Gaussian distribution to generate the error valuesǫij in
order to model error distributions that potentially exist in
the physical world. In our model, the error in perception is
static, which means thatǫij is constant throughout a run.
Without loss of generality, we set the means of the response
thresholds of all of the tasks to zero. We assume that all tasks
have an identical standard deviation value. An agent will act
on a task when the state of the task falls below the agent’s
response threshold for the task. If we have only one task
whose state value isx and the input for a given timestep isu,
then the proportion of agents that are expected to act in that
timestep is defined by the cumulative distribution function,

Q(x− u) =
1

σ
√
2π

∫ ∞

x−u

e−
(
z−µi

σ
)2

2 dz. (5)

If the problem consists of more than one task, then it
becomes possible to have more than one task fall below
an agent’s task response thresholds. As a result multiple
tasks will be expecting a contribution from the same agent.
Because an agent can only contribute to one task in each
timestep, the actual expected contributions that a task re-
ceives will be less than the full amount that it expects due to
loss of contributions to other tasks. Agents select randomly
from among the tasks with states below the agent’s response
thresholds1. In order to model this as a dynamic system, we
assume that the average response over multiple timesteps will
be evenly divided among the tasks according to their need.

We are concerned with how the dynamic system is trans-
formed in each timestep by a transformation array,E. The
entries of the transformation array,E, are dependent on the
states of the tasks relative to one another. The expected
proportion of agents that will act on each task in timestept,
z, is

z = Ex-, (6)

is the vector of the expected proportion of contributions for
each task when the other tasks are not considered, where

x- =











Q(x1 − u1)
Q(x2 − u2)

...
Q(xn − un)











. (7)

In order to find E, we begin by defining the expected
proportion of agents that will contribute to taski as

zi = B(x-, i) + C(x-, i), (8)

where

B(x-, i) =
minx-

l
∈x- x-

l)

n
(9)

1Exploratory work has shown that random selection performs as would
be desired for a tracking problem when compared to other selection
mechanisms, such as choosing a task based on the largest or proportional
difference between the task current and target values.



is the expected proportion of the contribution to the task with
the highest state value which will be divided among all the
tasks and

C(x-, i) =
∑

x-
j
≤x-

i

[

D(x-, j)

ψ(x-, j)

]

(10)

calculates the expected proportion of the contribution that
task i will receive while taking into account contribution
loss to the other tasks. In order to calculateC(x-, i), we
look at the intervals defined by the task states, and calculate
the expected proportion of contribution available within each
interval.

The functionD(x-, j) calculates the expected proportion
of contribution in the interval from taskj’s state to the next
highest task state value

D(x-, j) =
x-
j − x-

next
∑

x-
l
=x-

j
1
, (11)

where x-
next = maxx-

g<x-
j
(x-

g) indicates the proportion
Q(xg) for the taskg with the next highest state value from
task j. The summation in the denominator prevents repeat
inclusion of the same contribution determined byD(x-, j)
for all tasks with the same state value as taskj in the
summation of the terms defined inC(x-, i).

The functionψ(x-, j) counts the number of tasks whose
state value is greater than or equal to that of taskj,
because these are the tasks to which taskj will lose agent
contributions.

ψ(x-, j) =
∑

x-
l
≥x-

j

1. (12)

For example, if all four tasks have unique state values,
such thatx1 − u1 < x2 − u2 < x3 − u3 < x4 − u4, then we
have

z =









x-
1−x-

2 +
x-
2−x-

3

2 +
x-
3−x-

4

3 +
x-
4

4
x-
2−x-

3

2 +
x-
3−x-

4

3 +
x-
4

4
x-
3−x-

4

3 +
x-
4

4
x-
4

4









(13)

Separating the terms, we obtain

z =









x-
1 − x-

2

2 − x-
3

6 − x-
4

12
x-
2

2 − x-
3

6 − x-
4

12
x-
3

3 − x-
4

12
x-
4

4









. (14)

From Equation 14, we can determine that the transforma-
tion array for this example is

E =









1 -12 - 16 - 1
12

0 1
2 - 16 - 1

12
0 0 1

3 - 1
12

0 0 0 1
4









. (15)

Using the knowledge that this example is based on a vector
x that is ordered in a decreasing fashion fromx1 to x4, it is
intuitive that the transformation arrayE will always be an
upper triangular array if we order the vectorx. Even if some
tasks have equal state values, theE acting on the decreasing
ordered vectorx- will still be defined as an upper triangular

array. For example, if, in the ordered vectorx, the condition
x1 − u1 < x2 − u2 = x3 − u3 < x4 − u4 is true, then we
can describe the transformation array as

E =









1 -12 - 16 - 1
12

0 1
3 0 - 1

12
0 0 1

3 - 1
12

0 0 0 1
4









. (16)

When all the tasks states are equal,E can be defined as
diagonal array

E =









1
4 0 0 0
0 1

4 0 0
0 0 1

4 0
0 0 0 1

4









. (17)

Thus, even though the dynamic system has variable coeffi-
cients (changing entries inE), the transformation array can
always be re-written as an upper triangular array by simply
re-ordering the tasks’ state vector by non-increasing values.
This upper triangular array simplifies the stability analysis
for fixed points, under the condition that the state vectorx

is ordered.

C. Putting it all together

Now that we have defined our problem representation and
the decision making process of the multi-agent system, we
can combine both into a discrete dynamic system repre-
sentation of how the tasks states change over time. In this
form, we can analyze the system to understand the behavior
and determine conditions for stability. The dynamic system
mapping of the states of the tasks is

x(t) = x(t− 1)− u(t) + αE(x-(t)), (18)

whereα = m × c is the total contribution the multi-agent
system can make at any given timestep. Since the update to
the belief in position by the tracker is the sum of the agent
contributions, the output mapping for the dynamic system is

y(t) = y(t− 1) + αAz(t), (19)

where A is the aggregatingq × n array combining the
directional responses into the resulting dimensional position
change. The goal is to minimize the difference betweeny(t)
andd(t).

Because the multi-agent system has a finite number of
agents and the total contribution,α, is dependent on the
number of agents, the maximum response that the system
can provide is bounded. The control system has the potential
to track an object if the total contribution of agents is enough
to counteract the sum of the reduction on the set of all
tasks. A problem is considered feasible at a time step if the
relationship

α ≥
∑

i

ui (20)

holds. For some period of discrete time steps,[t1, tτ ], a
problem is feasible (not necessarily stable) if the relationship
in Equation 20 holds true during the span of that time period.
In this work, we focus on feasible tracking problems.



III. A NALYSIS

The components of our system (the tasks) are dependent
on each other due to the resource constraints of a set number
of agents. Because the tasks in our dynamic system must
share the available agent resources, the multi-agent response
to a single task can vary dynamically due to the states of the
other tasks. Dependency between the components creates a
variable coefficient dynamic system, which is generally dif-
ficult to analyze. Using the knowledge that the tranformation
arrayE can be re-written as an upper triangular array, we
can analyze the system using the partial derivatives of the
dynamic system mapping.

To analyze the dynamic system, we need to calculate the
fixed points of the system and determine the stability near
the fixed points. Fixed points can be determined by solving
for the statex∗ = f(x∗), where f(x∗) is the function
describing the right hand side of Equation 18. Linearization
of our non-linear dynamic system model can determine under
what conditions the system is stable. The order of the states
at the fixed point is important. If the system is stable at
the fixed point, stability near the fixed point will only be
true assuming the order of the states holds. Responses to
arbitrary states may not result in orderings the same as the
fixed point. Linearization cannot determine if the system is
stable for arbitrary states near the fixed point, let alone for a
broad range within the domain of possible state values. An
understanding of the system behavior across arbitrary task
state values allows for an effective application of the system
to a given problem2. Thus, we analyze the system with two
approaches to attempt understand how the dynamic system
behaves. First, we will do a linearization near the fixed point
to determine if there are any conditions that the system is
stable. Second, we will attempt to show general behavior of
the system for tasks starting from any arbitrary state values.

A. Linearization near the fixed point

Intuitively, a fixed point,x∗ = f(x∗), exists when the
order of the state vector corresponds to the magnitude of
the disturbances on the states (the largestui must corre-
spond with the largest response), wheref(x) is the function
defining the right hand side of Equation 18. Since the linear
model at any state, as well as at the fixed point,x∗, is an
upper triangular matrix when properly ordered, we can find
the eigenvalues,λ, with the roots of

det(Jfr − λI) =
∏

xi

(

1 +
∂Q′

i

∂x-
i

− λ

)

(21)

whereJfr is the Jacobian matrix of the functionf(x) when
the system states are ordered in a fashion as described for
the array in Equation 15 andI is the identity matrix of size
n. The partial derivative,∂Q

′

i

∂xi
= φ(xi − ui, µ, σ

2), is the
probability distribution function for statex-

i (this is the partial
derivative of the terms inz). For example, for the system with

2Given the assumption that the problem can be broken down intoa task
based representation.

a fixed point resulting in a re-writtenE(x-
i) as described in

Equation 15, the eigenvalues are

∏

xi

(1− αe−(xi−ui−µ)2/2

iσ
√
2π

− λ) = 0 (22)

A discrete dynamic system is stable when, for all eigen-
values,λ1, . . . , λp, we have,|λj | < 1. As we can see from
Equations 21 and 22, the eigenvalues are always less than
one. Thus, the driving restriction for determining stability is

1− αe−(xi−ui−µ)2/2

σ
√
2π

≥ −1. (23)

Noting thate−(xi−ui−µ)2/2 is largest at(xi − ui − µ) = 0
and solving for the parameters of the multi-agent system,
the dynamic system is always asymptotically stable for the
ordered states near the fixed point,x∗, when

α < σ2
√
2π. (24)

This is of most concern to avoidk-period3 cycles and chaotic
behavior in the system. Equation 24 shows how agents’ per-
ceptions (and therefore the distribution of the contribution)
determined byα and σ determines the sensitivity of the
system to changes. In fact, the asymptotic stability will have
a monotonic convergence for all the tasks when

α < σ
√
2π. (25)

B. General system behavior

In an attempt to analyze the stability for arbitrary task
states near the fixed point, we will build up an analysis
from a single task into a multiple task system. We begin
with multiple single task systems each having their own
populations of agents, then relax the assumption of mutually
exclusive populations by allowing agents to cross over be-
tween populations, in effect merging the separate populations
into one.

For a single task, the mapping simply becomes

x(t) = x(t-1)− u(t) +
α

σ
√
2π

∫ ∞

xi(t-1)−u(t)

e−
(
z−µ
σ

)2

2 dz.

(26)
This single task system was discussed in work by Campbell
et al. [12], in which the authors empirically analyzed the sta-
bility. There, a loose bound on the fixed point,x∗ = f(x∗),
for the system was derived using Chernoff approximation of
the Q-function. Tighter bounds can be found using numerical
methods for the equations

(x∗)2

2
+ ln(x∗) + ln

(

u
√
2π

α

)

< 0 (27)

and

0 <
(x∗)2

2
+ ln

(

x∗ − x∗

(x∗)2

)

+ ln

(

u
√
2π

α

)

. (28)

3
k is some integer describing the number of points in the cycle



The stability of the single task system around the fixed
point has already been analyzed above via Equations 23, 24,
and 25, because the derivative of the single task mapping
function, f ′(x∗), is the left hand side of Equation 23,
which was the partial derivative for the task with the largest
contribution in the ordered system. The fixed point is stable
when|f ′(x∗)| < 1. When Equation 24 holds, all state values
for the task have a derivative in the range[−1, 1] ensuring
that any feasible system is also stable.

Next, assume we have two independently stable single
systems, taski and task j, each with their own multi-
agent control system responding to disturbances. If we relax
the disturbance constraints of each individual system to a
broader constraint on both systems, such that

∑

l∈i,j ul ≤
∑

l∈i,j αl (similar to Equation 20), we have that one task
could potentially be infeasible. However, if the multi-agent
response systems are combined, the two individual tasks have
enough resources to be feasible.

Combining the multi-agent responses of two tasks can be
seen as an infeasible task “borrowing” contribution (agents)
from the other task. The infeasible task will only take the
contribution it needs to become feasible from the other
task. It is assumed that the borrowed contribution will be
distributed on the borrowing task according to its original
distribution,N (µi, σi). In order to ensure that the dynamic
system for taski remains stable after it borrows from the
other task, the relationship,αi + (ui −αi) < σi2

√
2π, must

hold. The originally feasible task, taskj, will remain stable
sinceαj will decrease (but not by so much that it becomes
infeasible). Additional tasks can be added to the system in
the same manner, as long as the total contribution available
does not exceedσi2

√
2π for the any taski.

Fully combining the two task systems into a single com-
bined system allows both sets of agents to act on either
task according to the defined distribution of error for the
task. The feasiblility of this combined system is defined by
Equation 20. The stability of the individual tasks within this
combined system is guaranteed if, for each task, Equation 24
holds true.

In the combined system, some of the contribution from
the single multi-agent system that is expected by a single
task is also potentially expected by other tasks. Thus, a
realized contributionby a single task is the amount of the
combined system’s total contribution minus the contribution
that will go to the other tasks. The contribution lost to other
tasks will not destabilize the single task fixed point because
lessening the realized contribution available to the task will
not violate the condition in Equation 24. However, a lower
realized contribution to a task does affect the fixed point of
that task calculated in Equations 27 and 28 by lowering its
value.

If the loss of expected contribution to other tasks is
thought to remain constant, the state of a task will converge
towards the fixed point defined by the amount of the realized
contribution. Since the other tasks will change state values,
the realized contribution for each task will likely change
every time step. Thus, a task will be attracted to many

changing “fixed points” during the span of a run. The range
of these fixed points for a task denotes the region to which
the task state will always be driven. This fixed point region
is not necessarily a bounded stable area since the task could
have oscillatory stability. If the stability is monotonic for
all fixed points possible in the range (or when the available
contribution is the largest) then the region is a bounded stable
area (once in it the state will not leave the region unless a
change in the input occurs).

As a result, the range of fixed points for a taski on a
constant input is given by the interval

[x∗i = f
(4)
i (x∗i ), x

∗
i = f

(1)
i (x∗i )] (29)

where f (j)
i (x∗i ) is the mapping function forxi(t) when

the contribution available to taski is α/j. This range of
fixed points accounts for all possible combinations of state
values for the system that include those near the task state
corresponding to the combined system’s fixed point. Since
arbitrary states are attracted to a region that includes that
fixed point, there is the potential the combined system will
converge to that fixed point. However, this does not yet prove
that arbitrary states will converge to the fixed point. This
only shows that the behavior of the system will drive each
of the task states to the region described in Equation 29.
Further analysis needs to be done to show that the system
is stable from arbitrary starting points4, under the restriction
thatα < σ2

√
2π.

IV. SIMULATIONS

We compare the expected behavior defined by our ana-
lytical model with an empirical agent-based simulation. Our
experiments investigate two aspects of system performance
on a tracking problem. First, we examine the effectiveness of
a multi-agent control system in tracking different trajectories.
Second, we examine the robustness of the multi-agent control
system to loss of agents.

Our experiments examine two tracking trajectories:

1) Square trajectory. The target starts at the center of the
top of the square and moves clockwise. One complete
square is tracked in 360 time-steps.The velocity input
of the object is always 0.5 units per time step,ui = 0.5,
for a single taski.

2) Circular trajectory. The target starts at the twelve
o’clock position and moves clockwise. One complete
circle is tracked in 360 time-steps The velocity input
will have a constant magnitude,|u| ≈ 0.39, so sum
of task inputs is never greater than 0.5 units per time
step,

∑

u(t) ≤ 0.5, ∀t.
The multi-agent control system is made up ofn = 100

agents. Each agent has a contribution of0.01, so α = 1.
Since all problems have a maximum sum of velocities of
0.5, this maintains that the system is feasible across all time
steps,α ≥ ∑ u. Using Equation 24,σ is set near the limit
to keep the system stable with a value of 0.2. The center of

4Intuitively it seems possible and experimental work seems to indicate
so.
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Fig. 1. This plot shows the object velocity in the negative direction of the
X dimension (west) and compares that with the expected response of our
analytical model and the behavior of our agent-based simulation. Because
each task receives an input signal only when there is movement in the
corresponding direction, this plot only has an active inputsignal when the
object is moving west on the square trajectory. As a result, the region of
interest is from timestept = 136 to timestept = 225.

the agent response thresholds for each task is defined to be
µ = 0.0. Thus, agents’ error in perception is randomly drawn
from the distribution defined byN (0, 0.2) for each task. The
empirical agent-based simulations use initial task statesof
0.6, (three standard deviations) to limit tracking error caused
by agent contributions to tasks with no initial input. The
analytical model uses initial states of0.0 to demonstrate the
the dynamic system’s attraction towards the proper signal
response.

A. Response effectiveness

We analyze the control actions for each trajectory by ex-
amining the directional control actions to determine how well
the task needs are being met and analyze the displacement
and heading control to see how well the system is performing
on the tracking problem.

Figure 1 plots the object velocity, in the negative direction
of the X dimension (west) for the square trajectory and
compares that with the expected response of our analyti-
cal model and the behavior of our agent-based simulation.
Because each task receives an input signal only when there
is movement in the corresponding direction, this plot only
has an active input signal when the object is moving west
on the square trajectory. As a result, the region of interestis
from timestept = 136 to timestept = 225. The analytical
model shows asymptotic stability in response to the input.
Oscillating convergence is caused by anα : σ ratio not
fit for monotonic convergence. The oscillations are due to
the higher sensitivity of the response near the center of the
Gaussian distribution. In the agent-based simulations, the
responses find “stable” cycles (in this case a 4-period cycle)
centered around the object’s velocity input for the task with
the given input. The discrete nature of the multi-agent system
does not gaurantee an accurate response for a timestep, but
the system converges to a stable cycle. Plots for the other
three directions are similar.

Figure 2 plots the object velocity, in the negative direction
of the X dimension (west) on the circle trajectory and
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Fig. 2. This plot shows the object velocity in the negative direction of the
X dimension (west) and compares that with the expected response of our
analytical model and the behavior of our agent-based simulation. For the
same reason as in Figure 1, this plot only has an active input signal when the
object has a westward component in its motion on the circle trajectory. As
a result, the region of interest is from timestept = 90 to timestept = 180.
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Fig. 3. Displacement control action is plotted with the actual displacement
for a run of the circle trajectory. The analytical model displacement
converges to a good approximation of the constant displacement of the
circle trajectory. The agent-based simulation displacement fluctuates with an
average difference from the actual displacement of 0.0075 units per timestep
over 50 runs and a standard deviation of 0.007.

compares that with the expected response of our analytical
model and the behavior of our agent-based simulation. For
the same reason as in Figure 1, this plot only has an active
input signal when the object has a westward component in
its motion on the circle trajectory. As a result, the region of
interest is from timestept = 90 to timestept = 180. The
analytical model estimates the westward component of the
object velocity well. Responses by the agent-based simula-
tion fluctuate around the analytical model’s estimations of
the object velocity. Some ranges, such as around timestep
125, have large fluctuations in the multi-agent system re-
sponses. Near timestep 125, in our clockwise simulations,
the southward direction also has a velocity component for
input. Increased sensitivity at this time period is due to the
input and spread of agent resources to other tasks causing
the state of a single task to fall in to the more sensitive range
near the center of the agent’s response thresholds. The data
for the other three directions is similar.

Figure 3 shows the displacement control action for an
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Fig. 4. Heading control action is plotted with the actual heading for a run
of the circle trajectory. The analytical model’s heading estimation is almost
indistinguishable from the actual heading. The agent-based system heading
has an average difference with the actual heading per time step over 50 runs
of 0.05 radians with standard deviation of 0.013.

entire run of the circle trajectory. It shows the displacement
of the object in each timestep and the response of the
analytical model and the agent-based system to the object’s
movement in that timestep. The analytical model’s estimation
of the displacement converges to be close to the constant
displacement of the object. The agent-based simulation re-
sponse shows some fluctuation from timestep to timestep.
The average difference in displacement per time step over
50 runs is 0.075 units with standard deviation of 0.007 and
a max of 0.380 units.

Figure 4 shows the heading control action for an entire
run of the circle trajectory. It shows the heading of the
object in each timestep and the response of the analytical
model and the agent-based system to the object’s movement
in that timestep. The plot implies that heading control
performs well. The analytical model’s estimations of heading
are nearly indistinguishable from the object’s heading. The
agent-based simulation heading control again fluctuates from
timestep to timestep. However, the performance over time
is generally good. The difference in the multi-agent system
response heading and the objects heading per time step over
50 runs averages 0.05 radians with a standard deviation of
0.013. The break down of the problem implicitly handles the
angular change with the task relationships.

B. System perturbations and tradeoff of smallα

An observant reader will have undoubtedly noticed the
comfort of the input demand,u, never exceeding half of
the available contribution,α. We next examine how the
performance of our system adapts to smaller values ofα;
how it adapts as(

∑

u)/α approaches 1. In effect, this also
examines the multi-agent system’s reaction to perturbations
such as failure or loss of agents. We will focus on the
circle trajectory problem. Each run consists of 100 completed
circles. One agent is randomly selected to fail at the end
of each complete circle. As agents fail, theα value of the
system decreases.

Figure 5 shows the average and maximum difference in
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Fig. 5. Performance of the multi-agent system tracking a circular moving
object as total number of agents decreases.

position of the object and the tracking system averaged per
a completed circle over 50 runs. As agents are removed,
the performance with respect to differences in tracking and
actual position initially improves. Maximum distance shifts
from about 1.07 at 100 agents to 0.89 at 49 agents. With
less than 49 agents, the system performance starts to rapidly
degrade. As the number of agents falls below 50, the system
is infeasible for growing spans of time when the directional
velocities of the object are near their highest sum, around
tangent angles ofkπ + π/2, k ∈ I.

The improvement in the performance of the system with
agent loss is due to the thinning of the Gaussian distribution
of agent response thresholds, causing the distribution of
agent response thresholds becomes relatively more uniform.
Uniform distributions of response thresholds have a linear
relationship with the task state values. A linear gradient for
the multi-agent system response results in a more reliable
change in response with change in input.

V. CONCLUSION

In this paper, we present a formal model and demonstra-
tion of a multi-agent based control system. The agents in
the system are decentralized, acting independently without
direct communication. Agents differ in their perception of
the system goals and the variation in agent perceptions has a
Gaussian distribution. In reaching for the system goals, the
agents contribute discrete amounts to tasks making up the
goals. Summation of the discrete contributions of the agents
creates a single control response. The variation in agent
perceptions in the multi-agent system can create a robust
and adaptable control unit, under sufficient parameters.

The performance of the system is dependent on two
defining parameters of the system: the total contribution
of the agents,α, and the amount of variation in the form
of the standard deviation of the agent response thresholds,
σ. Asymptotic stability in a single task dynamic system
representation is always present whenα ≤ σ2

√
2π. These

conditions can be extended to a multiple task system, where
the stability is evident in the drive of the system towards a



region where the fixed point resides. Performance is better
with lower total contribution than the upper limitσ2

√
2π due

to a “thinner” Gaussian distribution of the agents’ response
thresholds. Less total contribution has a more uniform dis-
tribution of contribution which has a more linear gradient.

Applied to a tracking problem where the tasks are corre-
lated with positive and negative direction-based components
of movement, the multi-agent system response estimates the
velocity, or the belief in position change of an object. In its
estimation of the velocity, the control action by the multi-
agent system appears noisy. The control actions of the multi-
agent system produce fluctuating error in estimation of the
position from timestep to timestep; however, theaverage
error in position changes remains relatively small. If a rough
estimate is all that is needed this is a sufficient system.
However, one could shift the mean of the agents’ thresholds
each timestep in attempt to make the fluctuation less erratic
and the controlling action more smooth.

The task based representation of the system that we present
in this paper has both strengths and weaknesses. Two sig-
nificant strengths are an inherent memory and robustness to
system perturbations. The multi-agent system has a memory
in the form of an accumulation of the difference in the system
responses to the inputs. This memory is particular useful in
the tracking problem example because it allows the multi-
agent system to make up for past missed contributions to a
task. The multi-agent system is robust in that loss of agents
will not degrade performance as long as the total contribution
of the multi-agent system is still enough to handle the input
signal, in other words, as long as the system is feasible.

Noteable weaknesses include a restriction on the size of
the multi-agent system for good behavior and the lack of
agent loyalty to a task. If the multi-agent system is too large,
the system responses are highly sensitive at levels near the
center of the variation of the agents’ response thresholds.
By randomly choosing betweeen tasks with demand, there is
potential for agents to switch between tasks frequently which
is inefficient.

A key feature of multi-agent control systems such as the
one presented here is that small inter-agent variations arees-
sential to the effective performance of the system as a whole.
This feature supports an recurrent and interesting possibility.
Whereas most engineered systems perceive manufacturing
variation, calibration errors, and other forms of variation that
are unavoidable in physical systems to be negative features
that must be actively dealt with, collaborative control systems
may in fact be able to take advantage of some forms of
variation to improve system performance.
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