
The Effects of Inter-agent Variation on Developing Stable and Robust Teams

Annie S. Wu
Ramya Pradhan
Gautham Anil

Electrical Engineering & Computer Science
University of Central Florida

Orlando, FL 32816

R. Paul Wiegand
Institute for Simulation & Training

University of Central Florida
3100 Technology Pkwy

Orlando, FL 32816

Abstract

This paper provides a formal analysis of a multi-agent
task allocation problem and how variation in agent be-
havior in the form of response probabilities can be used
to build redundancy in the multi-agent system (MAS).
In problems where experience is beneficial redundancy
provides an MAS with a back-up pool of actors if the
primary actors are unavailable. We examine how to en-
sure a complete team of agents needed for a particular
task will be formed, as well as two different ways of
determining how to ensure some level of redundancy.

Introduction
One of the expected benefits of multi-agent systems (MAS)
over single agent systems is the redundancy that is inher-
ently available in an MAS. In the problem of task alloca-
tion, redundancy refers to extra agents beyond the minimum
number of required agents that have the capability to per-
form a given task. Particularly in problems where expe-
rience is beneficial, redundancy provides an MAS with a
back-up pool of ready actors if the primary actors are un-
available for any reason. This paper provides a formal anal-
ysis of a particular single task allocation MAS, examining
how variation in agent behavior in the form of probabilistic
response tendencies can be used to build redundancy in an
MAS.

Response thresholds can be an effective method for
allocating tasks among a decentralized team of agents
(Bonabeau, Theraulaz, and Deneubourg 1998; Krieger and
Billeter 2000; Schelfthout and Holvoet 2002). In this ap-
proach, each agent has a threshold at which it will respond
to a task stimulus. When the task stimulus falls below an
agent’s threshold, that agent acts on the task. If all agents
have the same threshold value, then all agents will respond
at the same time. If, more realistically, agents have different
and unique threshold values, then agents will respond grad-
ually, ordered by decreasing threshold values. This implicit
ordering of the agents imposed by the agents’ threshold val-
ues means that the agents with the highest thresholds will be
the first to act and have the most opportunities to gain ex-
perience. Agents with lower thresholds will have fewer to

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

no opportunities to act and gain experience. Such a system
tends to lead to a group of specialists that are very efficient at
their tasks and very few, if any, other agents with experience
on a given task.

Studies on natural systems such as social insect societies
indicate that redundancy in a response threshold system can
be achieved “naturally” through probabilistic action (Jones
et al. 2004; Ravary et al. 2007; Weidenm̈uller 2004). If an
agent does not act deterministically every time its threshold
is met, but rather acts probabilistically, then there is some
probability that a high threshold agent will not act, which
gives a lower threshold agent the opportunity to act. Over
multiple task demands, the system is able to build a pool of
back-up agents that have some experience on a task, though
they may not have as much experience as the specialists.

We will examine how variation in agent behavior in the
form of probabilistic response tendencies can be used to
achieve redundancy when an MAS is working on a problem
in which experience is beneficial. We assume that the MAS
is a response threshold system (Bonabeau, Theraulaz, and
Deneubourg 1998) and that previous experience on a task
improves an agent’s future performance on that task. We
examine how probabilistic responses may be used to simul-
taneously build a redundancy pool and improve team perfor-
mance (through experience) on a task.

Even relatively simple MASs present some challenges re-
garding parameterization — they often represent an imple-
mentation of a non-linear, complex adaptive system and
can thus respond counterintuitively when practitioners ad-
just parameter values to achieve certain goals. Very of-
ten, research into task allocation methods involve a great
deal of empirical study (Agassounon and Martinoli 2002;
Reijers et al. 2007). One major advantage to our simple, or-
dered probabilistic framework for task allocation is the abil-
ity to characterize the system analytically. In this paper, we
provide concrete, theoretically justified advice for how to es-
tablish effective parameter values for such a task allocation
system for various goals a practitioner has in mind. In par-
ticular, we consider the issue of how to ensure a complete
team of agents needed for a particular task will be formed,
as well as two different ways of determining how to ensure
some level of redundancy. Though we focus on a single task
allocation scenario here, our goal is to extend these analyses
to scenarios that involve multiple tasks.

System Description
Consider a resource mining problem. A team of agents
shares a common store of Resource R. Each agent has a
threshold below which it will begin mining and collecting
additional amounts of Resource R for the store. For exam-
ple, agent 1 begins mining when the Resource R store is 80%
full while agent 2 does not begin mining until the Resource
R store drops to 20% full. Each time an agent mines, it
gains experience that allows it to mine more efficiently next
time. As a result, agents with a high threshold for Resource
R are always the first to act when the level of Resource R
falls and have multiple opportunities to gain experience and
improve their mining ability. Agents with low thresholds
for Resource R may or may not have opportunities to act
and gain experience. While this does result in the most ef-
ficient agents acting on a task, if those agents are busy or
lost for any reason, the mining efficiency of the team will
drop dramatically due to the low experience level of the re-
maining agents. If, however, low threshold agents also have
occassional opportunities to act, then loss of the high thresh-
old agents for a task will not result in as great a decline in
performance. We examine how probabilistic response ten-
dencies may be used to increase action opportunties for low
threshold agents.

Given a team ofn agents and a task that requiresx : x ≤
n agents to act, the ordering of the agents defined by their
threshold values indicates the order in which agents are of-
fered the opportunity to act on the task. We define atrial
to be one instance in which the task requires agents to act,
a candidate to be an agent that has been offered the oppor-
tunity to act, and anactor to be a candidate that chooses to
act. Within a trial, agents become candidates in order of their
decreasing threshold values. An agent becomes a candidate
only if not more thanx of the previous candidates have cho-
sen to become actors. Once a candidate, an agent chooses to
become an actor with probabilitys, where0.0 < s ≤ 1.0 is
the response probability. A trial ends when eitherx agents
have become actors on the task or when alln agents have
been given the opportunity to act on the task.

Let us consider the agents to be ordered from highest
threshold (quickest to act) to lowest threshold (slowest to
act). If there is no response probability (s = 1.0), then the
system is deterministic and only the firstx agents will act
and gain experience. Adding a response probability to the
agents’ decision making process allows some of the firstx
agents to choose not to act, thus, providing opportunities for
agents beyond the firstx to become candidates and possi-
bly actors. Over multiple trials, the system builds a back-up
pool of individuals beyond the firstx individuals that have
some experience acting on the task.

Ensuring Teams and Redundancy
The decentralized, order-based task allocation problem de-
scribed above involves a number of inherent tradeoffs. For
example, as motivated above, it will often be important that
over the course of many trials, a variety of agents have some
exposure to the task in order to gain experience with the task.
One would like to ensure some specified level of redundancy

of experienced agents over the course of various trials. In
this section, we consider an agent “experienced” if it partic-
ipates in a team on a task in at least one trial.

The obvious way to increase the probability that more
agents will gain experience is to reduce the response proba-
bility, s. As discussed above, lowerings means candidates
earlier in the sequence will not be active, which increases
the chance that later agents will have that opportunity. As
long ass remains non-zero, the smaller its value, the higher
the probability that the final agent will become a candidate.

Unfortunately, there’s a catch — lowerings also raises the
probability thattoo manyagents will reject the task. If this
happens, there will be too few agents to make a complete
team (there will be fewer thanx active agents), and the to-
tal number of agents that gain some kind of experience will
begin to decrease over repeated trials. Indeed,s should be
as large as possiblein order to increase the probability that
we find preciselyx agents to collaborate on the task in every
trial.

What is needed is a way to establish a value fors that is
sufficiently low to make the probability of achieving some
level of redundancy as high as possible but sufficiently high
to make the probability of making a team in each trial as
high as possible. With our task allocation process, it is pos-
sible to use traditional bounding techniques for stochastic
processes to help determine the response probability that
achieves these goals, when they are obtainable.

We divide our discussion into two parts: bounding the
probabilities associated with making a team and bounding
the probabilities associated with achieving a specified redun-
dancy. In both cases, we will consider the following process,
which is equivalent to a single task allocation trial: Assign
each of then agents a “mark” with independent probabil-
ity s, traverse a subset of the agents in order adding each
markedagent to the team if fewer thanx have already been
added, then terminate when either there arex agents on the
team or alln agents have been considered. Looking at the
process this way allows us to focus simply on the number
of marks. For our team-forming discussion, letM be a ran-
dom variable specifying the total number of marked agents,
regardless of whether the agents participate in the team.

Lemma 1 A single trial of the task allocation process will
result inM ≤ x− 1 with Pr

{
1− e−Ω(n)

}
whens < x−1

en .
It will result in M ≥ x with Pr

{
1− e−Ω(n)

}
whens > x

n .

Proof: The expected number of marked agents isn · s,
E{M} = ns, since there aren agents to be marked, and
each is marked with independent probabilitys. Let

δ =
x− 1
ns

− 1

and note that

(1 + δ) ns =
(

1 +
x− 1
ns

− 1
)

ns = x− 1

We use Chernoff bounds to bound the probability that there
are more thanx− 1 marks.

Pr {M > x− 1} = Pr {M > (1 + δ)E{M}}

<

[
eδ

(1 + δ)1+δ

]E{M}

=

[
e

x−1
ns −1

(x−1
ns)

x−1
ns

]ns

=
1

ens

[(
ens

x− 1

) x−1
ns

]ns

If x − 1 > ens, this converges to 0 exponentially fast asn
grows. Thuss < x−1

en implies Pr{M < x} = 1− e−Ω(n).

Now considerδ = 1− x
ns and note that

(1− δ) ns =
(
1− 1 +

x

ns

)
ns = x

We use Chernoff bounds to bound the probability that there
are fewer thanx marks.

Pr {M < x} = Pr {M < (1− δ)E{M}}

< eδ2E{M}/2

= e(1−
x

ns)
2
ns/2

= e−
ns
2 (ns−x)2

If x < ns, this converges to 0 exponentially fast asn grows.
Thuss > x

n implies Pr{M ≥ x} = 1− e−Ω(n). �

Theorem 1 With overwhelming probability, asn grows a
complete team will almost surely be formed whens > x

n

and will almost surely not be formed whens < x−1
en .

Proof: If there are fewer thanx marks over alln agents, a
complete team ofx agents will not be formed, and a com-
plete team can only be formed if there arex or more marks.
Noting this, the conclusion follows from Lemma 1. �

To discuss redundancy, we introduce the concept of are-
dundancy factor, c. This factor is defined such thatcx is the
total number of agents a user wishes to gain some experi-
ence over some number of trials (without loss of generality,
we assume thatcx = dcxe). To ensure this, we need that the
ultimate probability that an agent is active,Pi, is not “too
small”. For this, we examine the probability that thecxth

agent is given the opportunity to act. LetM now be the ran-
dom variable representing the number of marks in the first
cx agents. We first describe a bound ons that issufficientto
assure a reasonablePi, then we describe a looser bound that
is required if we do not wantPi to converge to0 with team
size.

Lemma 2 In a single trial of the task allocation process, if
s ≤ 1

ec , thenPcx = 1− Ω(1).

Proof: The expected number of marks in the firstcx agents
is c · x · s, E{M} = cxs. Let

δ =
1
cs
− 1

and note that

(1 + δ) cxs =
(

1 +
1
cs
− 1

)
cxs = x

We use Chernoff bounds to bound the probability that there
are at leastx marks in the firstcx agents:

Pr {M ≥ x} = Pr {M > (1 + δ)E{M}}

<

[
eδ

(1 + δ)1+δ

]E{M}

= e−csx · (ecs)x

So whens < 1
ec , this approaches 0 exponentially fast withx.

Thus thecxth agent almost surely is given the opportunity to
act andPcx = s ·

(
1− e−Ω(1)

)
= 1 − Ω(1) for constants.

�

Lemma 3 In a single trial of the task allocation process, if
s > 1

c , thenPcx = e−Ω(1).

Proof: Again E{M} = cxs. Now let

δ = 1− 1
cs

and note that

(1− δ) cxs =
(

1− 1 +
1
cs

)
cxs = x

We use Chernoff bounds to bound the probability that there
are fewer thanx marks in the firstcx agents:

Pr {M < x} = Pr {M < (1− δ)E{M}}

< eδ2E{M}/2

= e−
x

2cs (1− 1
cs)

2

So whens > 1
c , this approaches 0 exponentially fast with

x. Thus the probability that thecxth agent is even given the
opportunity to act is exponentially small for constants. �

Summarizing for a given trial:

• If s < x−1
en , a team will almost certainlyfail to be com-

pleted;

• If s > x
n , a teamwill almost certainly be completed;

• If s ≤ 1
ec , there is a constant probability that thecxth

agent will gain experience

• If s > 1
c , thecxth agent will almost certainlyfail to gain

experience

Given this analysis, the safest value fors is one that is
greater thanx

n in order to ensure a team is made,and it is
less than1

ec to ensure a constantPcx. However, these two
bounds often do not overlap, so this is often not possible.
Fortunately, we can be a bit coarser in our advice regarding
the upper bound. As long as1ec < x

n , there is no good rea-
son to sets < 1

ec since doing so would only reduce the ex-
pected number of agents that gain experience, and thus the
redundancy. Moreover, whenPcx is constant with respect
to x, the expected number of agents to gain experience will

Figure 1: Average number of experienced agents for various
values ofs ∈ [0, 1], wherem = 10, n = 10, x = 8, and
c = 2.

typically be larger thancx with a sufficient number of trials
because many of the agentspastthecxth agent will almost
have some experience. Consequently, it is more practical to
discuss for what values ofs our goalcannotbe achieved:
when x

n > 1
c , we will either have to choose to sets large

enough to make a team or small enough to avoid failing to
achieve our redundancy factor; we cannot do both. When
x
n ≤

1
c , the most practical advice is to sets to a value slightly

larger thanx
n .

Figure 1 demonstrates how these bounds relate to system
redundancy for a system with 10 agents and tasks requiring
6 agents. Each point represents the number of agents with
experience in at least one of 10 trials, averaged over 10 sim-
ulations. The two shaded regions represent the analytical
bounds for ensuring a complete team is formed and a suffi-
cient level of redundancy is obtained (c = 2). The darkest
shaded region is where these bounds overlap. From this ex-
ample, it is clear that setting the response probability near
x/n is more than sufficient to ensure redundancy.

Optimizing for Redundancy
In the previous section, we showed how simple bounding
techniques can be used to give advice about the range of
“reasonable” values for the response probability to achieve
the goals of forming a complete team while also ensuring
some redundancy. This advice has the advantage of being
simple and efficient to compute; however, it provides only
indirect advice regarding redundancy since it only considers
the probability of thecxth agent acting in a given trial, rather
than the expected number of agents that act over many trials.
Our goal here is to tune the scenario to achieve experience
goals afterm trials. The first time an agent becomes an actor,
that agent is marked as having experience. For our purposes,
acting a second time makes no difference. To optimize the
experience distribution, we need to first find the probability
of gaining experience inm trials for every agent.

The first step is to describe the probability of theith agent
becoming a candidate in a single trial,Ci. This probability
is 1 for i ≤ x because we need at leastx agents. For the rest,
they won’t become candidates if the team has already been
completed, which is governed by the cumulative binomial
distribution.

Ci =
{ ∑x−1

k=0

(
i−1
k

)
sk(1− s)i−1−k i > x

1 i ≤ x
(1)

As each candidate becomes an actor with probabilitys,
the probability of theith agent becoming an actor follows.

Pi = sCi (2)

UsingPi, we can use the geometric distribution to com-
puteTi, the probability of being an experienced agent after
m trials.

Ti = 1− (1− Pi)m (3)

This probability distributionTi overn agents tells about
the experience of agents afterm trials. This distribution is
obviously affected by the parametersx, m, ands — and it is
possible to directly optimizes to achieve desired properties
within this distribution. Consider one such target distribu-
tion Zi given below. This distribution indicates that we are
interested in gettingcx trained agents afterm trials.

Zi =
{

1 i ≤ cx
0 i > cx

We assumex andm are given to us and that we are free
to change onlys. Even within these restrictions, we envi-
sion two different scenarios — one where we need exactly
cx agents and another where we need at leastcx.

In the first scenario, we minimize the mean squared er-
ror to the distribution over all the agents including some ad-
ditional (sayn) virtual agents that are placed after thenth

agent. The virtual agents allow us to specify that we want to
minimize the chance of not making a team. We can compute
thes that solves the first scenario targeting exactlycx agents
as follows.

s1 = argmins

2n∑
i=0

(Ti(s)− Zi)2

In the second scenario, we minimize mean squared error
only over the firstcx agents and virtual agents aftern. This
implies we are interested in getting at leastcx agents and
additionally want to minimize chances of not making a team.
Thes that produces the bestTi distribution can be expressed
as follows.

s2 = argmins

(cx∑
i=0

(Ti(s)− Zi)2 +
2n∑

i=n+1

(Ti(s)− Zi)2
)

For conditionsn = 100, x = 20, c = 2,m = 10 and100
virtual agents, the distributions that result from optimizing
for both these strategies are demonstrated in Figure 2. Note
the shaded area under the target functionZi indicating that
we want the firstcx agents to get an experience for sure. The
triangle points indicate theTi distribution fors = 0.5912

optimizing the first scenario while the star points indicate the
distribution fors = 0.4413 optimizing the second scenario.
The star distribution is notably to the right as we are not
penalizing additional trained agents. The vertical line at100
separates the real agents on the left and the virtual agents on
the right.

0 50 100 150 200
Agents

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pe

rie
nc

e
pr

ob
ab

ili
ty

Figure 2: A plot showing the area under the target function
as shaded and optimal distributions for two scenarios in tri-
angle and star points. Virtual agents are to the right of the
black line.

Empirical comparisons using an agent based simulation
yield comparable results. Algorithm 1 shows the pseu-
docode for our simulation. Using the same parameter set-
tings as above (x = 20, c = 2,m = 10 andn = 200 = 100
real+100 virtual agents), we run the agent based simulation
using thes values above for comparison with the data from
Figure 2.

Figures 3 and 4 plot the normalized number of times an
agent gains experience at least once fors = 0.4413 and
s = 0.5912, respectively. Each point shows the aver-
age value and standard deviation over 500 simulation runs,
where each simulation consists ofm = 10 trials. Thex-
axis shows the number of agentsn. The y-axis indicates
the normalized value of the number of times an agent gains
experience at least once along with the standard deviation.
The vertical line indicates thecxth agent. These plots indi-
cate that our empirical results match closely with the theo-
retical expectations and suggest that our analytical approach
provides an effective guide for achieving specific task allo-
cation and experience goals.

Conclusions
In this paper, we examine the effects of response probabil-
ity on the number of agents in an MAS that gain experience
on a task. We assume that agents are ordered, use response
thresholds in their decision making process, and that past
experience is beneficial to future decision making. Our goal
was to show how fairly simple analytical techniques can be

Algorithm 1 TISIMULATION (n, x, s, NumOfSims, m)
1: for k = 0 to NumOfSims do
2: create n agents and intialize their actCount to zero
3: for j = 0 to m do
4: localCount← 0
5: for i = 0 to n do
6: if localCount < x then
7: randNum ∈ [0.0, 1.0]
8: if randNum ≤ s then
9: increment agent i′s actCount

10: end if
11: end if
12: end for
13: end for

{Calculate number of actors (SimActors[][]) in this
simulation}

14: for i = 0 to n do
15: if agent i′s actCount ≥ 1 then
16: SimActors[k][i]← 1
17: else
18: SimActors[k][i]← 0
19: end if
20: end for

{Reset actCount to zero at the end of this simula-
tion}

21: for i = 0 to n do
22: agent i′s actCount← 0
23: end for
24: end for
{Steps to record number of times an agent acts in Nu-
mOfSims}

25: for i = 0 to n do
26: tempSum← 0
27: for k = 0 to NumOfSims do
28: tempSum← tempSum + SimActors[k][i]

{record if an agent acted at least once in a simu-
lation or not}

29: tempDev[k]← SimActors[k][i]
30: end for

{Normalize tempSum; store normalized value in
Ti[] }

31: Ti[i]← tempSum/NumOfSims
{Obtain standard deviation of tempDev[] and nor-
malize}

32: SD ← std dev(tempDev)
33: NstddevActing[i]← SD/NumOfSims
34: end for
35: return Ti, NstddevActing

used to help provide very specific guidance for how to de-
termine parameter values in the system to achieve certain
experience goals.

We used traditional bounding techniques from stochastic
processes to show how to set the response probability to en-
sure that a complete team is likely to be formed in a given
trial anda reasonable probability that a specified level of re-
dundancy will be possible. The same method also makes it

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

T
i

Agents

s=0.4413, NumOfSims=500

Figure 3: The plot showsTi the normalized number of times
an agent gains experience at least once in 500 agent-based
simulations, where one simulation consists ofm trials. The
x-axis shows the number of agentsn. They-axis indicates
the normalized value of the number of times an agent gains
experience at least once along with the standard deviation.
The vertical line indicates thecxth agent. The curve in the
plot is similar to the theoretical curve fors = 0.4413.

very clear when it is impossible to achieve both goals. We
followed this with a discuss for how to optimize a mathemat-
ical model of the task allocation process to achieve specified
levels of redundancy over multiple trials.

Future work includes extension to multiple task problems,
studies in dynamic environments, and application and test-
ing on a more realistic problem. The work presented here
focuses on a single task scenario. More realistically, task al-
location problems tend to involve multiple tasks and agents
possibly with varying preferences for each task. In addition,
real problems often involve task demands and team capa-
bilities that change over time. Extensions to this work will
attempt to provide guidance in these more complex environ-
ments.

Ackowledgements
This work was supported in part by ONR grant
#N0001490911043 and General Dynamics grant
#100005MC.

References
Agassounon, W., and Martinoli, A. 2002. Efficiency and
robustness of threshold-based distributed allocation algo-
rithms in multi-agent systems. InProceedings of the 1st
Internationall Joint Conference on Autonomous Agents and
Multiagent Systems, 1090–1097.

Bonabeau, E.; Theraulaz, G.; and Deneubourg, J.-L. 1998.
Fixed response thresholds and the regulation of division of
labor in insect societies.Bulletin of Mathematical Biology
60:753–807.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200

T
i

Agents

s=0.5912, NumOfSims=500

Figure 4: The plot showsTi the normalized number of times
an agent gains experience at least once in 500 agent-based
simulations, where one simulation consists ofm trials. The
x-axis shows the number of agentsn. They-axis indicates
the normalized value of the number of times an agent gains
experience at least once along with the standard deviation.
The vertical line indicates thecxth agent. The curve in the
plot is similar to the theoretical curve fors = 0.5912.

Jones, J. C.; Myerscough, M. R.; Graham, S.; and Oldroyd,
B. P. 2004. Honey bee nest thermoregulation: Diversity
promotes stability.Science305(5682):402–404.
Krieger, M. J., and Billeter, J.-B. 2000. The call of duty:
Self-organised task allocation in a population of up to twelve
mobile robots. Robotics and Autonomous Systems30(1-
2):65–84.
Ravary, F.; Lecoutey, E.; Kaminski, G.; Châline, N.; and
Jaisson, P. 2007. Individual experience alone can generate
lasting division of labor in ants.Current Biology17:1308–
1312.
Reijers, H. A.; Jansen-Vullers, M. H.; zur Muehlen, M.; and
Appl, W. 2007. Workflow management systems + swarm
intelligence = dynamic task assignment for emergency man-
agement applications. InBusiness Process Management’07,
125–140.
Schelfthout, K., and Holvoet, T. 2002. ‘To do or not to
do’: The individual’s model for emergent task allocation.
In Proc. AISB Symp. Adaptive Agents and Multi-Agent Sys-
tems, 111–115.
Weidenm̈uller, A. 2004. The control of nest climate in bum-
blebee (bombus terrestris) colonies: interindividual variabil-
ity and self reinforcement in fanning response.Behavioral
Ecology15(1):120–128.

