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Abstract—Every agent in a society initially possesses a set
of personal norms. Group norms emerge when agents interact
with one another and exchange information in such a way
that multiple agents begin to acquire the same personal norm.
This emergence is the result of information transmission, social
enforcement, and internalization. If a population contains a single
group norm, as a result of every agent in the population acquiring
the same personal norm, then it can be said that a consensus
has been reached by the population. We model the formation
of consensus in silico by adapting a recently developed model
of norm emergence to a multi-agent simulation. A screening
experiment is conducted to identify the significant parameters
of our model and verify that our model is capable of producing
a consensus. The experimental results show that our model can
attain consensus as well as two additional states of information
equilibrium. The results also indicate that both network structure
and agent behavior play an important role in the formation of
consensus. In addition, it is shown that the formation of consensus
is sensitive to the simulation parameter settings, and certain
values can prevent its formation entirely.
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I. INTRODUCTION

The computational study of norms is a subdomain of
computational social science [1]–[3]. Current research on the
computational study of norms is largely concerned with nor-
mative systems [?], [4]–[7] and multi-agent models. Though
this area is still young, early results have seen norms and
normative systems successfully applied to many areas of
computer science and sociological theory [7], [8].

In previous work [7], we constructed a theoretical model
of the norm life-cycle as an evolutionary process. This model
aggregates many of the discoveries and ideas from the past
decade of norms research. Personal norms are created by
agents in response to conflict. Once created, personal norms
spread from agent to agent via transmission processes until a
group norm emerges. As agents are exposed to the personal
norms of others, a decision is made whether or not to adopt
the new norm. This decision depends on internal and external
pressures. If the decision is made to adopt a new norm, then
the agent goes through a social learning process that realigns
its preferences. When a sufficient number of agents possess
the same personal norm, then it is said that a group norm

has emerged. Over time, personal norms evolve as conflicts
change. This leads to a shift in the group norms.

The portion of the norm life-cycle in which group norms
emerge from the spreading and internalization of personal
norms is called norm emergence [?], [4]–[6], [9]–[12]. Be-
cause the process of norm emergence is a process of informa-
tion spread, it is conceivable that it can be used to solve the
consensus problem. The consensus problem poses the question
of how consensus can be achieved in asymptotic time given
an initial set of information states and a network topology that
models an agent interaction network [13]–[15]. The answer to
this question has serious implications to multi-agent coordina-
tion [16]–[18], when many agents need to possess the same
information if the system is to operate properly.

Our current research uses the emergence portion of our life-
cycle model to investigate the emergence of group norms as
a possible model of consensus formation. Consensus occurs
with every agent in a multi-agent system possesses the same
information state [15]. Like norms, consensus can be thought
of as emerging from a population of individuals as a result
of social interactions and information exchange. If norm
emergence can produce consensus, then the components of
norm emergence can be used to develop consensus algorithms
(solutions to the consensus problem). Norm emergence based
consensus algorithms may provide better solutions than tra-
ditional consensus algorithms, such as the average consensus
algorithm [13], [14], under circumstances that require a great
deal of social interaction. However, in order for our model
to have real world applications, it must first be verified and
validated to ensure that the output is both technically and
practically correct.

This paper discusses the initial results of our on-going
investigation. In particular, it presents verification that our
model is sufficient to produce a consensus. This verification
is accomplished by first implementing the model in silico and
then conducting a screening experiment to isolate the relevant
factors of the model and gain an initial understanding about
the behavior of the parameters. It is shown that under our
model, the interactions between social agents can result in the
organization of information into multiple equilibrium states,
of which consensus is one possible outcome.

We begin by describing our model of group norm emer-



gence. Then, we introduce a multi-agent simulation built on
top of the emergence model. Next, we describe a screening
experiment on the simulation that is aimed at identifying the
significant factors that contribute to the emergence of group
norms and consensus formation. Finally, we discuss the results
of our experiment and discuss the direction of our future
research in this area.

II. A MODEL FOR THE EMERGENCE OF GROUP NORMS

To investigate the formation of consensus via the processes
involved in the emergence of group norms, we adapt a model
of norm emergence that was developed during our previous
research on normative systems [7]. This model was designed
after a thorough survey of the existing state of the art, and
constructed to account for a number of commonalities between
the various models and their supporting theories. Specifically,
the emergence of group norms is the result of the transmission,
enforcement, and internalization of personal norms over a
social network.

Our model consists of multiple agents, each of which is a
simple social entity that possesses a set of behaviors and has
the capability to store two norms. The behaviors of an agent
correspond to the processes of transmission, enforcement, and
internalization. At any given time, the norms possessed by
an agent can be in either an internalized state or a learning
state. Norms in the internalized state represent information
the agent has successfully learned about in the past. Norms in
the learning state represent information that is currently being
learned through the internalization process. Norms can have
their state changed from the learning state to the internalized
state, but not vice versa. An agent can only have one norm
in the internalized state and one norm in the learning state at
any given time.

Each agent is situated in a simple environment repre-
sented by a finite two dimensional lattice with three possible
types of interaction neighborhoods: Moore, von Neumann, and
complete. In a Moore neighborhood, an agent can interact
with other agents to the north, south, east, west, northwest,
northeast, southwest, and southeast of its current location.
In a von Neumann neighborhood, an agent is only able to
interact with other agents to the north, south, east, and west of
its current location. In a complete neighborhood, each agent
is able to interact with every other agent. Each site on the
lattice may or may not be populated. Agents do not move. A
lattice that is not fully populated may have multiple clusters
of agents. If the lattice is viewed as a network where edges
represent “is a neighbor of” relationships, then a cluster is a set
of connected agents. Furthermore, we can refer to the number
of neighbors an agent has as the degree of that agent. The
interpretation of the lattice as a simple network allows certain
concepts to be expressed in a clear and concise manner. The
choice to use a lattice, as opposed to a random, scale-free, or
small world network, was made in an effort to keep things
simple for our initial test phase. Subsequent experiments will
examine alternative network topologies.

Interaction between agents occurs at a one-to-one ratio and
only with an agent’s immediate neighbors.

A. Emergence Processes

Transmission is the process in which norms (the transmis-
sion) are selected and sent from one agent (the sender) to
another (the receiver). The transmitted data is represented as
a binary string that is composed of a number of bits equal
to the information length (IL) parameter.. The transmission
process involves the sub processes of receiver selection and
transmission selection.

• Receiver Selection is the process where the sender iden-
tifies an agent to be the receiver. In the current model,
receiver selection is done by selecting one agent in
the local neighborhood of the sender from a uniform
distribution.
Let i be any site on the lattice and j be a neighboring
site of i. Let agenti be the sender with Ni neighbors
and agentj be the selected receiver. In the stochastic
emergence algorithm, j ∈ Uniform(Ni).

• Transmission Selection is the process where the sender
selects the norm that it will transmit to the receiver.
This selection process is stochastic. A norm is always
transmitted and the selection of the specific norm is
based on a parameter called the learning transmission
probability. The learning transmission probability (LTP )
is the probability that an agent will transmit the norm it
is current learning, as opposed to the internalized norm.
Let x ∈ Uniform(1.0), then x ≤ LTP =⇒ the norm
being learned is transmitted and x > LTP =⇒ the
internalized norm is transmitted. The learning transmis-
sion probability changes over time with LTP0 = 0.0 and
LTPt+1 = LTPt+k ·IT+SI , where 0.0 ≤ LTPt ≤ 1.0
is the learning transmission probability at time t, k is
a scaling factor, IT > 1.0 is the total time it takes
to learn a new norm (the internalization time), and
−1.0 ≤ SIt ≤ 1.0 is the impact of sanctions.

Enforcement is the process in which a sender’s learning
transmission probability is adjusted in response to the most
recent norm that was transmitted and the state of the local
neighborhood the agent is situated in. Enforcement involves
sub-processes that identify the local norm (local norm iden-
tification), check to see if the sender is in violation of the
local norm (violation checking), and sanction the sender if
a violation is detected (sanctioning). In the current model,
enforcement is internal.

• Local Norm Identification is the process where an agent’s
local neighborhood is examined and the norm content of
the neighborhood is used to create a frequency distribu-
tion. Agents are not able to detect the internal state of
each other, so the sender must ask each of its neighbors
what their internalized norm is. Neighbors are able to lie
to the agent, but in the current model it is assumed that
they are truthful. The norm with the highest frequency
is labeled the local norm. If there are multiple states of



information with the same frequency then there is no local
norm. In the initial mode, agents cannot be sanctioned if
there is no local norm.
Let D be the frequency distribution of norms in Ni. Then
the local norm is d = max(D)

• Violation Checking is the process where a sender’s trans-
mission and state are checked against the local norm. If
the sender’s transmission does not match the local norm,
but the norm the sender did not transmit does, then the
sender is in violation of the local norm and is sanctioned.
However, if the sender’s transmission and the norm that
the sender did not transmit are both different from the
local norm, then the agent is said to be ignorant of the
local norm and is not in violation. Ignorance of the local
norm means that the agent is incapable of transmitting
the proper norm since it does not possess it.
Let α the internalized norm of the sender, β the norm
currently being learned by the sender, and O ∈ α, β be
the sender’s last transmission, then (O = α, α %= d, β =
d) ∧ (O = β, β %= d, α = d) =⇒ the sender is in
violation, (O = α, α = d) ∧ (O = β, β = d) =⇒ the
sender is not in violation, and α %= d, β %= d =⇒ the
sender is ignorant of the local norm.

• Sanctioning is the process in which a sender adjusts
its learning transmission probability to favor the current
local norm in the next time step. If the agent transmitted
its internalized norm when it should have transmitted
the norm it is learning, then the learning transmission
probability increases. If the agent transmitted the norm it
is learning when the internalized norm should have been
transmitted, then the learning transmission probability
decreases. When sanctioning occurs, adjustments are only
made if the sender is in violation. In the current model,
the sanctioning process itself is stochastic, with a prob-
ability of occurring equal to the sanctioning probability
(SP ) parameter.
Let 0.0 ≤ SP ≤ 1.0 be the sanctioning probability,
0.0 ≤ SI < 1.0 be the sanction impact, and x ∈
Uniform(1.0), then x ≤ SP =⇒ the sender sanctions
itself if a violation is detected. If a sanction occurs,
(O = α, α %= d, β = d) =⇒ LTPt+1 = LTPt+SI and
(O = β, β %= d, α = d) =⇒ LTPt+1 = LTPt − SI .

Internalization is the process in which a norm is transferred
from one agent to another and transformed from the learning
state to the internalized state. When a sender transmits a norm
to a receiver, it may be modified during transmission. Norms
are modified as a result of error due to the sender, the receiver,
or the environment. Upon receiving the information about a
norm, the receiver makes a decision whether or not to accept
the norm. If the receiver accepts, it begins to learn the norm.

• Modification is the process in which a transmission is
altered to account for noise. Modification occurs prior to
the decision of an agent to accept or reject a transmission.
In the current model, modification is treated as a bitwise
mutation operator on the transmission string. A mutation

probability (MP ) parameter controls the mutation oper-
ator.
Let 0.0 ≤ MP ≤ 1.0 be the mutation probability, O
be the original transmission string, O′ be the modified
transmission, Ob, O′

b ∈ 0, 1 be the bit at position b in the
respective transmission string, and x ∈ Uniform(1.0).
Then x ≤ MP,Ob = 0 =⇒ O′

b = 1 and
x ≤ MP,Ob = 1 =⇒ O′

b = 0.
• Acceptance is the process where an agent determines

whether or not it wants to accept an incoming transmis-
sion from a sender. The decision to accept a transmission
is probabilistic and based on the acceptance probability
(AP ) parameter; but only if the incoming incoming norm
is new to the agent. Incoming norms that are already
known to the agent are automatically rejected. In the
current model, acceptance of a new norm implies that
the norm currently being learned is forgotten.
Let 0.0 ≤ AP ≤ 1.0 be the acceptance probability and
x ∈ Uniform(1.0), then x ≤ AP =⇒ the incoming
norm is accepted.

• Learning is the process in which the learning transmission
probability is adjusted independent of enforcement. In the
current model, this adjustment is given by LTPt+1 =
LTPt +

1
IT . Once the learning transmission probability

exceeds 1.0, the internalized norm is forgotten and re-
placed by the norm that was being learned. The learning
transmission probability is then reset to 0.0 and the agent
is free to begin learning a new norm. When an agent
is not learning a new norm, it will always transmit its
internalized norm. The learning process is the only way
that an agent can replace its internalized norm; though
the norm being learned is replaced whenever an agent
accepts a new norm.

The decision to use a stochastic approach for this initial
model comes from the idea that all events can be translated
into a set of probabilities. This allows the emergence model to
be as general as possible, while still proving a framework that
can be used to create more specific algorithms by replacing
the stochastic elements with deterministic ones. Future exper-
iments will examine the impact of more realistic transmission,
enforcement, and learning processes.

III. NORM EMERGENCE SIMULATION

The Norm Emergence Simulation (NESIM) is a multi-agent
simulation that enables us to investigate whether or not our
model is sufficient to allow the formation of consensus. For
the current experiment, the model parameters are homoge-
neous and the initial norm that is assigned to each agent is
heterogeneous. The parameters are homogeneous so that we
can maintain experimental control in order to systematically
verify whether or not the formation of consensus is possible.
The norms are heterogeneous because consensus occurs when
all agents possess the same internalized norm. To detect
consensus and the formation of group norms, the simulation
is engineered to check for multiple equilibrium states. The
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Fig. 1. NESIM process execution sequence

presence of these states, along with the number of steps
executed by the simulation, make up the simulation outputs.

A. Simulation Overview

In NESIM, every agent executes the processes of transmis-
sion, enforcement, and internalization in a sequential order
(Figure 1), once per time step, until one of two halting
conditions is reached: either the model enters an equilibrium
state, at which point group norms may emerge (Figure 2),
or the simulation executes more than 21,000 time steps1.
Consensus occurs only when the agent population contains
a single group norm. An agent’s norm is indicated by its
grayscale coloring in simulation space2.

The simulation is able to recognize three states of stable
equilibrium: global convergence, local convergence, and dy-
namic equilibrium. Cycles are also possible, but the simulation
does not detect them.

• Global convergence (Figure 2a, 2d) occurs when every
agent in the population has the same internalized norm,
and, if the agent is learning a new norm, that norm is
equal to the internalized norm (So that even if learning
is successful, it will not change an agent’s internalized

1One time step elapses after every agent in the simulation has run and all
of the statistics for the current step have been collected. The value 21,000
was chosen because initial runs showed that emergence tends to happen in
the first 10,000 time steps.

2For this current experiment, norms only control the color of an agent. As
such, each norm can be thought of as specifying a particular type of clothing
to be worn.

(a) (b) (c)

(d) (e)

Fig. 2. Stable equilibrium states on a 25x25 von Neumann lattice with four
possible norms. The stability tolerance is 100 steps. Agents are represented by
grayscale squares that indicate their internalized norm. White space denotes
an empty lattice site. Circles over an agent represent a norm being learned
by that agent. Panels a, b, and c have an agent density of 0.6. Panels d
and e have an agent density of 1.0. (a) and (d) are an example of global
convergence. The same norm is internalized by all agents in the population.
(b) is an example of local convergence. Each cluster has converged to its
own norm. (c) and (e) are an example of dynamic equilibrium. No agent has
changed its internalized norm in over 100 time steps, but each agent continues
to try and (unsuccessfully) learn new norms.

norm). Additionally, the internalized norm state of every
agent must have remained constant for a number of
time steps greater than the stability tolerance, where the
stability tolerance is a simulation parameter.

• Local convergence (Figure 2b) occurs when every agent
in a cluster has the same internalized norm, and, if
the agent is learning a new norm, that norm is equal
to the internalized norm. Additionally, the internalized
norm of every agent must have remained constant for a
number of time steps greater than the stability tolerance.
Local convergence can only occur on a disconnected
network where agents are broken into multiple clusters.
The recognition of local convergence signifies that while
that entire population has not converged to a single norm,
each cluster has.

• Dynamic Equilibrium (Figure 2c, 2e) occurs when the
internalized norm of every agent in the simulation has
remained constant and unchanged for a length of time
greater than the stability tolerance, but the norm being
learned is not considered. The appearance of a dynamic
equilibrium implies that the norms of the agents in the
model have become organized, but it does not imply
that local or global convergence has been achieved.
Because dynamic equilibrium does not require agents to
be finished learning, it is possible to have multiple norms
in the same cluster. The existence of multiple norms
is an important sign of theoretical soundness because it
matches the results observed by other researchers [19]–



[21].
Equilibrium states may co-exist with one another. When

the model has reached a state of global convergence, the
conditions for local convergence and dynamic equilibrium
are also met. When the model has reached a state of local
convergence, the conditions for dynamic equilibrium are also
met. However, local convergence does not imply that there
is also global convergence. When dynamic equilibrium is
reached, nothing can be implied about the possibility of global
or local convergence.

The spread of a norm is measured as a percentage of the
population. Consensus can only occur when this value reaches
100%. However, as a model of norm emergence, a norm
becomes a group norm when the measure of spread exceeds
a simulation parameter called the emergence threshold. Group
norms may emerge from any of the three equilibrium condi-
tions, and when the emergence threshold is set to a low value
(below 0.5), it is possible for multiple group norms to exist.
In addition to determining when all agents have internalized
the same norm, the emergence threshold provides a way to
measure the type and amount of deviance in a population.
However, it should be stressed that this is a simulation-level
measure. The agents themselves currently have no way to
know when they are obeying a group norm versus a deviant
norm.

B. Simulation Parameters and Experimental Factors
In order to verify that our model is capable of reaching

an equilibrium state and producing a consensus, we test
the significance of 10 factors that should directly influence
the simulation output (Table I). We will refer to these 10
parameters as “experimental factors,” or “factors”, in order
to be consistent with the statistical literature. These 10 factors
can be split into two categories, environmental and behavioral.
Environmental factors specify the structure of the agent en-
vironment, including the interaction network and population
size. Behavioral factors control the actions executed by the
agent in each time step. Testing the factors related to environ-
ment and agent behavior simultaneously allows me to identify
the interactions that may exist between and within the two
groups.

The environmental factors consist of the:
• Information Length (IL) specifies the number of distinct

information states that a transmission can represent.
• Grid Width and Grid Height determine the horizontal and

vertical dimensions of the environment and make up the
grid size (GS).

• Edge behavior (EB) determines whether or not the lattice
wraps from one side to another to form a torus.

• Neighborhood Type (NT) specifies the degree of the local
neighborhood. The current version of NESIM allows for
von Neumann neighborhoods, Moore neighborhoods, and
Complete neighborhoods.

• Agent Density (AD) specifies the ratio of populated to
unpopulated sites on the lattice. The higher this value the
larger the population size will be.

TABLE I
PARAMETERS OF THE NORM EMERGENCE SIMULATION

Symbol Range Low Value High Value

GS [3, ∞) 5 10
EB {Cut,Wrap} Cut Wrap
IL [1, ∞) 1 3
NT {vonNeuman, vonNeumann Complete

Moore,
Complete}

AD [0.0, 1.0] 0.4 1.0

AP [0.0, 1.0] 0.05 1.0
MP [0.0, 1.0] 0.0 0.05
IT [1.0, ∞) 1.0 10.0
SP [0.0, 1.0] 0.0 1.0
SI [−1.0, 1.0] 0.05 1.0

The behavioral factors consist of the:
• Acceptance Probability (AP) specifies the probability that

an agent acting as a receiver will accept an incoming
transmission.

• Modification Probability (MP) specifies the probability
that a transmission will be modified before the receiver
decides whether or not to accept it.

• Internalization Time (IT) specifies the total number of
time steps that it takes an agent to learn new information.

• Sanctioning Probability (SP) specifies the probability that
an agent will be sanctioned if it violates the local norm.

• Sanction Impact (SI) specifies the amount that the learn-
ing transmission probability will be modified by if an
agent is sanctioned.

The range of valid values for each parameter can be found
in Table I.

C. Response Variables
In the statistical literature, a response variable is the output

of a system. For the experiments discussed in this paper, we
are interested in the effect of the environmental and behavioral
factors on four response variables: global convergence, local
convergence, dynamic equilibrium and halting time.

• Global convergence, local convergence, and dynamic
equilibrium are conditions on the norm frequencies of
the simulation. Global convergence implies that a single
personal norm has been internalized by every agent in
the population. Local convergence and dynamic equilib-
rium imply that more than one personal norm has been
internalized by the population.

• Halting time measures the number of time steps it takes
for the simulation to reach a state of equilibrium. If an
equilibrium state is not reached within 21,000 time steps,
then we consider the associated factor permutation unable
to converge.

For all but the halting time, the response variables are
recorded as either a 0 or a 1. This allows each response
variable to be averaged over multiple replications so that a
probability can be determined for each specific set of factor
values.



IV. EXPERIMENTAL DESIGN

The experiment described in this paper is intended to iden-
tify and explore the basic dynamics of our current model of
norm emergence. The primary hypotheses of this experiment is
that in the norm emergence simulation, one personal norm to
spread to every agent, resulting in a pattern of internalization
that can be classified as consensus. Furthermore, there will
be parameter configurations that allow deviant agents to resist
the adoption of the personal norms of others. Because of this,
consensus formation will not always be possible; it will depend
on the initial conditions of the emergence algorithm.

Because this experiment is focused on proving the existence
of consensus behavior in a model of norm emergence, it is
conducted as a screening experiment backed by a factorial
design [22]–[24]. In a factorial design, the model inputs are
referred to as factors, and their specific values are called
levels. The output of the model is a response, and a response
variable refers to a variable that holds the output, such as a
flag representing the appearance of global convergence. The
purpose of using a screening experiment based on a factorial
design is to identify the measure of significance that each
factor has on each response variable, so that the model can
be optimized and insignificant components removed. A factor
is labeled as statistically significant if an ANOVA analysis
assigns it a p-value less than some desired threshold. However,
statistical significance does not imply practical significance.
The specific design used in this initial experiment is a 1/8
fractional factorial design on 10 factors with 2 levels per factor
and full fold-over. This yields a resolution VI design with a
total of 256 factor permutations. There are 5 replications at
each factor permutation. This produces a design matrix that
allows for a total of 1280 data points per response variable.
Because of the nuances that appear in constructed simulations
[24], [25] only the effects that have a p-value less than 0.1
and a normalized effect value (in the range of [0, 1]) higher
than 0.05 are considered significant. The analysis of the data
generated from the simulation is done using Minitab 16.1.0.

The use of a factorial design allows us to easily explore
the parameter space of our model by sampling a subset of all
possible solutions that can be obtained by permuting the inputs
between their high and low levels (Table I). Additionally, be-
cause the inputs are varied one by one, using a factorial design
allows the significance of both the first-order (main effects)
and second-order effects (interaction effects) to be measured
with regard to a particular response variable. The significance
of an input is critical to understanding the dynamics of the
system.

V. EXPERIMENTAL RESULTS AND ANALYSIS

The experiment described in this paper is intended to iden-
tify and explore the basic dynamics of our current model of
norm emergence. In order to do this, a multi-agent simulation
is created to implement the emergence model. The primary
purpose of this simulation is to generate data that can be used
to understand the dynamics of the emergence of group norms.

To generate the required data, a screening experiment is con-
ducted on the norm emergence simulation in order to identify
which parameters have a significant effect on the response vari-
ables that represent equilibrium states of global convergence,
local convergence, and dynamic equilibrium, as well as the
halting time. Because social models are substantially different
from the industrial models found in the engineering disciplines
[24], [25], the analysis of the experimental results focuses
on the magnitude of the effects more so than the p-values.
This approach is taken because, given enough replications,
all factors in a simulation model should appear statistically
significant [25]. In particular, emphasis is placed on effects that
have a p-value less than 0.10 and an effects magnitude larger
than 5%. The experimental results discussed in this section
depend on the assumption that the agent behaviors (AP, MP,
IT, SP, and SI) are homogeneous. Future experiments will need
to be conducted to consider the heterogeneous case, but we
suspect that the results will be similar.

We examined the first and second-order interactions be-
tween the experimental factors and identified multiple sig-
nificant third-order interactions. Unfortunately, the software
we used for analysis (Minitab) was not able to handle all
of the data that the simulation produced. As a consequence,
we are not confident in the results for these third-order
interactions. However, many of the third-order interactions we
examined appear to involve the same effects as the second-
order interactions, so the identification of significant factors
is not affected. We did not examine forth and higher order
interactions for the current analysis, but because of aliasing
they do exhibit a small impact on our results. The range of
parameters should be reduced if future experiments are to
conduct a more in-depth parameter exploration.

A. Global Convergence
Global convergence occurs when a single norm is internal-

ized by every agent in the population (figure 2a, 2d). The
experimental results indicate that the modification probability
is the most significant factor with regards to this response
variable. This is to be expected since high values of the
modification probability increase the chance that transmissions
will be modified. If transmissions are modified often enough,
then the population will be unable to converge to a single
information state because they will constantly change the norm
they are trying to learn before the learning process completes,
and learn nothing as a result.

The effect levels of the neighborhood type, agent density,
and grid size suggest that the environment also plays an
important role in determining whether or not the simulation
will reach a state of global emergence. Specifically, if the
underlying network is disconnected it is impossible for agents
to transmit across clusters, and so it is only by chance that
global emergence will occur. This is in agreement with results
from both consensus theory [13], [14] and percolation theory
[26].

The significant interactions detected by the screening ex-
periment also support the idea that modification and the



environment are largely responsible for global convergence.
The internalization time and sanctioning probability also have
an effect, but they are small relative to the environmental
factors. These results suggest that it would be interesting to
run additional experiments looking at the significance of agent
behaviors when the environmental factors are held constant.

The acceptance probability, sanction impact and information
length do not appear to have a significant effect on global
emergence.

B. Local Convergence

Local convergence occurs when every cluster is taken over
by a single norm (figure 2b). The network structure has the
most significant effect on the appearance of local emergence.
This is not surprising since connected networks should yield
global emergence over local emergence. As with global emer-
gence, the modification probability also has an effect on local
emergence; though to a much lesser degree.

If we consider the combined data from the global and local
convergence responses, it appears that as long as the modifica-
tion probability and internalization time are low, the simulation
will eventually reach an equilibrium state. If the underlying
network is sufficiently disconnected, then the equilibrium state
will be local convergence. If the underlying network is con-
nected, then the equilibrium state will be global convergence.
However, if agents are unable to change their internalized
norms because they are never able to finish learning a new
norm (due to high values of internalization time), then the
equilibrium state will be neither global convergence nor local
convergence. It will result in a dynamic equilibrium.

C. Dynamic Equilibrium

Dynamic equilibrium occurs when all agents in the system
continue to learn, but are unable to finish the internalization
process. This produces a geometric clustering of internalized
norms (figure 2c, 2e), but the prevents the system from
converging either globally or locally. The internalization time
is the most significant factor for dynamic equilibrium. This is
because agents with a high internalization time are insulated
from changing their internalized norm. In order for the inter-
nalized norm of an agent to change, the learning transmission
probability must reach 1.0. The larger the internalization time,
the longer this takes. If an agent is constantly accepting new
norms, then it will be never able to finish learning. This
situation is most likely to occur on the border of two clusters
with different internalized norms. Dynamic equilibrium results
because no border agent changes its internalized norm, but
at least one agent is always trying to learn a new one.
The significance of the sanctioning probability and sanction
impact supports this line of reasoning, as both factors work in
conjunction with the internalization time to adjust the learning
transmission probability.

Unlike with global or local convergence, dynamic equilib-
rium is primarily dependent on the behavior of the agents and
not the environment, although the network structure cannot

be ignored completely since it affects the shape of the intra-
cluster norm borders. In particular, the acceptance probability
is fairly significant for dynamic equilibrium. This is because
low values give agents time to finish internalizing a norm,
where as high values result in greater degrees of information
exchange and more frequent resetting of the learning process.

One particular feature we noticed in the raw data was that
the internalization time is at the high value in every single
occurrence of a dynamic equilibrium. This indicates that non-
instantaneous learning is necessary to produce this specific
equilibrium state.

D. Halting Time
The significant main effects suggest that the agent behavior

plays the primary role in determining how long it will take
for an equilibrium state to be reached. In particular, the
modification probability is the primary factor, with a high
value resulting in a longer emergence time. The internalization
time, sanctioning probability, and sanction impact are able to
counter the effects of modification, but only within a currently
unknown boundary. In addition, the acceptance probability acts
as a time-scaling factor and helps stabilize agent learning.

VI. DISCUSSION

This experiment identified and explored the basic dynamics
of our model of norm emergence. The primary hypotheses
of this experiment was that the norm emergence simulation,
driven by our model, would allow one norm to spread to every
agent, resulting in a pattern of internalization that resembles
consensus. Furthermore, it was assumed that there would be
parameter configurations that allowed deviant agents to resist
the adoption of the norms of others. Because of this, consensus
formation would not always be possible; it would depend on
the initial conditions of the emergence algorithm.

The results of this experiment confirm the correctness of
both hypothesis. The data shows that by varying the initial
conditions, our emergence model can produce a consensus.
In addition, the results suggest that the behavioral parameters
may have a larger impact on the ability of norms to spread
than the underlying network topology; however the this may
not hold true for non-lattice networks. Furthermore, because
the simulation was able to reach a dynamic equilibrium,
we suggest that our emergence model is also capable of
producing solutions in which multiple group norms can co-
exist. If each group is the considered independently, it can be
said that our model produces multiple consensus, or allows
the self-organization of a population into multiple teams.
Taken together, all of the experimental results paint a tapestry
that describes the basic dynamics of the norm emergence
simulation and its underlying stochastic emergence model.
They also suggest that further experimentation and refinements
are required before emergence can be proved to be a solution
to the consensus problem.

A. Basic Model Dynamics
The modification probability is the key factor in determining

whether or not the simulation will reach an equilibrium state;



low values of modification can produce cycles of convergence,
where the internalized norms are unstable and change over
time from one state to another. High values of the modification
probability prevent any equilibrium state from being reached.
Further experiments are required to detect the boundaries of
this behavior, and identify where any tipping points are that
switch the system from convergent to divergent.

One way to counter the behavior of modification is to use
large values for the internalization time. Using large values
for the internalization time is shown to reduce, and even
eliminate, the effects of modification. Although, when the
internalization time of the agents is so high that learning
cannot be accomplished (because the learning transmission
probability is constantly being reset), then the model is forced
into dynamic equilibrium.

The internalization time also has an impact on the visual
patterns that appear in the simulation. Values larger than 1.0
cause well-formed clusters of internalized norms to appear
with smooth continuous borders, as seen in Figure 3. We
believe that this occurs because, in cases of non-instantaneous
learning, agents with the same norms are able to reinforce
one another and easily replace new norms before they can be
learned.

Sanctions can help agents overcome long internalization
times by moving their learning transmission probabilities
closer to the 1.0 level required to complete learning, but only
if the sanctioning impact is sufficiently high. The real impact
of sanctions is that they move the norms of agents closer
to the local norm, thereby causing intra-cluster formations of
homogeneous norms. This assists in the self-organization of
the system.

The acceptance probability appears to control the speed at
which norms can spread. Low values give agents more time
to try and learn new norms without being disrupted, while
high values can cause the rapid back and forth transmission
of norms that prevents learning.

The neighborhood type, agent density, and edge behavior
control how connected the agents are. The neighborhood type
and edge behavior determine the degree of the agents. The
agent density controls the clustering of the agent population.
It appears that the more connected the underlying lattice is, the
higher the chance for convergence if the mutation probability
is low. This behavior is is expected in light of the findings
from percolation theory [26]. The connectivity of the agents
also determines which equilibrium state will emerge (Figure
2). When agents are highly connected such that there is only
a single cluster, the simulation will halt in a state of either
global convergence or dynamic equilibrium. The simulation
can only halt in a state of local convergence when the agents
form multiple clusters. It is particularly odd that the network
structure does not appear to significantly affect the halting
time, but this may be a consequence of the level choices for
the factors or the result of using a lattice and not examining
a wider variety of structures such as rings and power-law
networks. As a comparison, some experiments comparing
small world to lattice networks [13] have shown that norms

(a) (b)

Fig. 3. The effect of different internalization times after 500 steps on a
100x100 cut von Neumann lattice with two possible norms (black or gray)
using a random seed of 0. Squares represent internalized norms, circles
represent norms being learned. (a) has an internalization time of 1.0. (b)
uses an internalization time of 10.0.

converge much faster on small world networks. Other’s [6],
[27] have also found that the topology has an impact on the
time it takes for a norm to emergence.

The number of norms initially in the system does not have
a practically significant impact on any of the equilibrium state
or the halting time. This is because the norms in the initial
population are either quickly reduced to only a handful, or
unable to spread and cause dynamic equilibrium as a result.
However, information length does matter when there is mod-
ification. When transmissions are modified, the information
length affects the resulting transmission. Large information
lengths increase the innovation capacity of the system by
allowing a transmission a wider range of norms to mutate
into.

Based on the data collected from our screening experiment
and observations of selected runs, we make the following
additional observations about our emergence model:

• As the degree of the agents increase, the number of
norms that can be maintained during a state of dynamic
equilibrium appears to decrease. This is illustrated in
Figure 4.

• Most of the norm exchange between agents occurs at
the borders of norm clusters (Figure 3b). This is most
likely a result of the current implementation automatically
rejecting a transmission if it contains a norm that is
already known.

• If the stability tolerance is low (< 100), there are multiple
parameter configurations that can can prevent the spread
of information and result in the model reaching dynamic
equilibrium almost immediately. This suggests that the
stability tolerance should be kept to a high value, but,
because the current model is stochastic, there can never
be any certainties that a state of dynamic equilibrium will
remain forever.

B. Factor influence on the Response Variables
It is not enough to understand the overall dynamics of nor-

mative information emergence. To guide future experiments,



(a) (b) (c)

Fig. 4. The effect of neighborhood type on norm diversity at dynamic
equilibrium 50x50 cut lattice with 256 possible norms. To force dynamic
equilibrium, we set IT = 10.0, SP = 1.0, SI = 1.0. (a) uses a
von Neumann neighborhood, giving each agent 4 neighbors. (b) uses a
Moore neighborhood, giving each agent 8 neighbors. (c) uses a Complete
neighborhood, connecting every agent to every other agent. Each agent has
624 neighbors.

such as comprehensive sensitivity analysis, the relationship
between significant factors and the response variables must
also be understood. A summary of these relationships for the
most significant factors is described below. However, care must
be taken in the literal application of these results. For instance,
an extremely large internalization time will lead to dynamic
equilibrium by preventing any agent from ever learning new
information.

• The likelihood of reaching global convergence is en-
hanced when the agents are connected, the agent density
of the environment is high, and the modification proba-
bility is low.

• The likelihood of reaching local convergence is enhanced
when the agents are disconnected and the agent density,
modification probability, acceptance probability and in-
ternalization time are low.

• The likelihood of reaching dynamic equilibrium is en-
hanced when the the acceptance probability, internaliza-
tion time, sanctioning probability, and sanction impact
are high, and the modification probability is low in
comparison to the internalization time.

• The likelihood of reaching either global or local conver-
gence is enhanced when the modification probability and
internalization time are low.

• The likelihood of reaching any equilibrium state is en-
hanced when the acceptance probability, internalization
time, sanctioning probability, and sanction impact are
high, and the modification probability is low.

• The time it takes to reach an equilibrium state is low
when the acceptance probability and internalization time
are high, and the modification probability is low.

C. Next Steps
The norm emergence simulation, which implements our

emergence model, is able to produce conditions that match
those of a consensus. However, a careful consideration of the
results and the problem space suggests that a finite lattice may
not be the ideal representation on which to test our model.
Instead, we propose that a general network representation
should be used. This approach will allow us to reduce the

factors being considered and provide explanations of the al-
gorithm dynamics that are easier to understand when compared
against than those that can be arrived at under a finite lattice
representation. A more general network representation will
also allow us to compare results across different topologies,
enabling us to generate evidence that can be used to prove
when a consensus can be reached using the processes of our
model.

The set of factors that we will use with a general network
model are the agent count (AC), agent degree (AD), infor-
mation length(IL), acceptance probability (AP), internalization
time (IT), modification probability (MP), and sanction impact
(SI). We will also investigate the utility of adding a raw
transmission probability (TP) to enhance the behavior-space of
the agents and allow for reputation and other non-guaranteed-
transfer mechanisms. The main difference between a finite lat-
tice representation and a more general network representation
is that the grid size and agent density will be replaced with
a discrete agent count (AC) parameter, the neighborhood type
and edge behavior will be replaced with an agent degree (AD)
parameter, and the sanction probability will be set to 1.0.

Using the new network representation, We will rerun a
screening analysis to ensure the model is consistent with ex-
pectations. Once we have established a base line for parameter
bounds, we will begin to explore additional parameter settings
and alternative implementations of the normative processes as
an alternative to the current stochastic methods. As part of a
richer parameter exploration, we will investigate the effects
of blockers [28] and memory [10]; where blockers are agents
that have an acceptance probability of 0.0. An initial look at
their effect shows that a handful of blockers on a disconnected
network are enough to prevent global or local emergence and
encourage dynamic equilibrium.

VII. CONCLUSION

In this paper we have verified that the emergence model
introduced by Hollander and Wu [7], and implemented in our
current research, is sufficient to allow the emergence of group
norms and the formation of consensus. We have also identified
and interpreted the effects of the significant factors involved
in the various equilibrium states associated with the model.

Although our initial investigation was not meant to fully
explore the parameter space of our model or identify criti-
cal patterns of behavior, we discovered that multiple norms
can self-organize into distinct groups within the same lattice
structure. The trivial case occurs when the agent clusters are
disconnected. In this scenario information is not able to pass
between clusters, and as a result norms able to converge
independent of the disconnected agents. The more interesting
case occurs when the agents are connected to one another,
either directly or indirectly. In a connected network, multiple
norms are able to self organize (Figure 4a and 4c, Figure 3b)
into distinct groups with highly active borders that hold firm
even after thousands of time steps. Even more interesting is
that these self-organized groups can be resilient to high levels
of mutation.



We have identified a basic relationship between the average
degree of the agents and the long-term norm diversity in the
system (Figure 4). As the degree of each agent increases, the
total number of norms that are able to survive in a system de-
creases. This is an important characteristic that may have many
practical applications in the design of multi-agent systems,
particularly with regard to the self-organization of groups
or consensus formation, as required by many coordination
problems.

Based on the success of our experiment, it has been decided
that while a finite lattice representation of our model is
sufficient, a more generalizable network-based representation
would be preferred. Implementing this change is our next
immediate step, followed by a detailed sensitivity analysis of
the model. Our long term goal is continue investigating how
the processes of norm emergence can be applied to consensus
formation and multi-agent coordination.
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