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ABSTRACT
The goal of this paper is to explore the effects of synchroniza-
tion on distributed decision making processes. In particular,
we examine the dynamics of a spatially distributed multi-
agent system where agents use local information to make
role assignments. By investigating several role assignment
procedures for this problem, we find that, in general, system
stability increases as the number of agents that make a
decision at any particular time decreases. This result is
promising, because in a physical, distributed system the
time at which agents make their decisions would most likely
not be synchronized. Although the two decision making
procedures examined in this paper are similar, their dy-
namics with respect to synchronization are very different.
One shows a linear relationship between synchronization and
system behavior, whereas a non-linear relationship is seen
with the second method. We demonstrate the significance of
synchroneity on the dynamics of these complex systems and
argue that it should be taken into account when studying
the behaviors of multi-agent systems that utilize emergent
coordination.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intel-
ligence—Multiagent systems; I.6.0 [Artificial Intelligence]:
Simulation and Modeling—General

General Terms
Design, Experimentation

Keywords
Emergent coordination, dynamics, synchroneity, simulation

1. INTRODUCTION
In the multi-agent systems subfield of Distributed Arti-

ficial Intelligence, emergent coordination refers to control
methods that utilize local interactions and little to no inter-
agent communication [5]. Because the emergent coordina-
tion methods use little to no communication and the a-
gents do not require global information, they scale well to
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teams of large sizes. However, their reliance on the emergent
properties that result from the interactions of a large num-
ber, possibly thousands [7], of agents makes their behavior
difficult to predict and formally model [5, 6]. Lerman et
al. [5] discuss how mathematical models can be useful tools
for studying multi-robot systems as they can be used to
complement or even supplement experimental analyses. In
some cases, the mathematical models may be the only prac-
tical way to study systems if the simulations are computa-
tionally expensive [5]. Here, a mathematical model provides
evidence suggesting that a distributed system can become
unstable when too many agents act simultaneously.

Several biological studies have shown that variation in a-
gents’ behaviors can increase system-wide stability [3, 4].
Honey bees regulate their nest temperature by fanning hot
air out of their nest when temperatures get too high and
cluster together when temperatures get too low [4]. To
prevent the nest temperature from continuously fluctuating
around the desired state, each bee has a different threshold
for when it starts fanning or clustering. If all bees had the
same threshold, the hive would never be able to converge to
the desired state. As another example, studies show that the
differences in ants’ tolerances to pheromone concentrations
may result in a division of labor within the colony [3]. In
these and similar systems, variation amongst the individuals
is necessary to achieve the desired system dynamics.

In this paper, we show that variation in the time at which
agents make their decisions can greatly affect the dynam-
ics and performance of distributed systems. Huberman and
Glance [2] came to a similar conclusion when comparing
sequential and parallel updating schemes in a spatial Pris-
oner’s Dilemma problem. Here, we use both mathematical
and algorithmic models of the distributed process found in
Hecker et al. [1] to take a more in-depth look at how syn-
chroneity can affect system dynamics. Hecker et al. give
experimental results showing how sensors in a spatially dis-
tributed network can use local information to make deci-
sions about what particular range of transmission frequen-
cies to monitor. The goal is to have an equal number of
sensors monitoring each one of the frequency ranges, and
the problem is made difficult because each sensor only has
limited knowledge about the team’s composition. Because of
its generality and simplicity, this problem is used to explore
the effects of synchronization on the dynamics of distributed
decision making processes.

A mathematical model of Hecker et al.’s system predicts
that the system stabilizes when few agents are making deci-
sions simultaneously, but there is a point at which the syn-



chroneity becomes so high that the system constantly over-
shoots the desired role distribution and is not able to settle
on a stable configuration. Using several observations about
the original role updating procedure we present a modified
version with higher stability across a wider range of syn-
chronization values. Although the original and proposed
decision making processes are similar, they are affected very
differently by synchronization. With the former, there is a
linear relationship between synchronization and system be-
haviors; whereas, with the latter we see a phase transition
in behavior when synchronization becomes very high. The
main contribution of this paper is to show the significant
role that synchronization can play in the dynamics of sys-
tems that utilize emergent coordination.

2. THE PROBLEM
The problem consists of M agents arranged in a toroidal

grid, and each agent is in one of N different roles at any
given time. The goal of the team is to reach and maintain
an equal distribution of roles, i.e., the attendance of each
role should be as close to M

N
as possible.

Using the information gathered from their local neigh-
borhood, agents attempt to determine what role to switch
to in order to move the system closer to the equidistribu-
tion state. To simulate synchroneity, each agent makes a
role assignment decision each time step with probability ǫ.
Thus, on average, M ∗ ǫ agents are making a decision each
time step. Below we describe three ways the agents can use
the information from their local neighborhood to make their
role assignment decisions.

2.1 Method 1
Method 1 is the role updating procedure found in Hecker

et al. [1]. To update its role, an agent begins by recording
the roles of each of its neighbors. An agent takes into ac-
count its own role when gathering these counts. Next, the
agent switches to the role that has the lowest count. If mul-
tiple roles have the lowest count, then the agent switches to
one of these roles with uniform probability.

An agent in rolei could find that there are less rolei agents
in its neighborhood than any other role and choose to stay in
rolei. Also, an agent in rolei could see the same number of
rolei and rolej agents and choose to switch to rolej . There
is no reason for the agent to perform this action since it
does nothing to change the role distribution of the agent’s
neighborhood. Method 2 does not allow this unnecessary
role changing to occur.

2.2 Method 2
With low synchroneity, Method 1 was shown to hover a-

round the equidistribution of roles but never settled in on
a stable configuration [1]. This behavior is undesirable,
especially if it is costly to update the role of an agent. This
problem can be eliminated by making two simple changes
to the original procedure: First, agents do not change their
role if their own role is one of those with the fewest count.
This change reduces the amount of unnecessary role changes
that agents make. Second, agents do not take into account
their own role when obtaining the role counts.

Let us look at an example to understand why the second
change leads to more stable behavior. Let 〈a1, a2, ..., aN〉
be the role count of an agent when it takes its own role
into account, i.e., ai is the number of neighbors, including

itself, of type rolei for some arbitrary agent. Without loss
of generality, assume the agent to be in role1. For each of
the following scenarios, the action and resulting role counts
are given as:

1. a1 ≤ ai, 2 ≤ i ≤ N ; stay in role1; 〈a1, a2, ..., aN 〉,

2. a1 = ai + 1, for some 2 ≤ i ≤ N ; switch to rolei;
〈a1 − 1, ..., ai + 1, ..., aN〉, and

3. a1 > ai + 1, 2 ≤ i ≤ N ; switch to some rolei;
〈a1 − 1, ..., ai + 1, ..., aN〉.

In Scenario 1, there are no more role1 agents than any other
role, so the agent remains in role1. In Scenario 3, there are
at least two more role1 agents than any other role, so the
agent will switch to one of the roles with the lowest count.
In both scenarios, the agent does its best to maintain an
equidistribution of roles amongst it and its neighbors. In
Scenario 2, the agent switches roles, but the switch does not
cause the distribution to get closer to the equidistribution,
i.e., because a1 equals ai + 1, an agent switching from role1
to rolei will only cause the values of a1 and ai to swap, and
thus, get no closer to the equidistribution.

An agent’s role count becomes 〈a1 − 1, a2, ..., aN〉 when it
does not take its own role into consideration. Substituting
a1 − 1 for a1 and combining Scenarios 2 and 3 from above,
the following scenarios are possible:

1. a1 ≤ ai + 1, 2 ≤ i ≤ N ; stay in role1; 〈a1, a2, ..., aN〉,
and

2. a1 ≥ ai + 2, 2 ≤ i ≤ N ; switch to some rolei;
〈a1 − 1, ..., ai + 1, ..., aN〉.

Now, the agent only switches roles when there are at least
two more role1 agents than some other role. Thus, the
agent does not make the mistake of switching roles when
the switch does not change the overall role distribution in
its local neighborhood.

2.3 Method 3
One way to achieve the goal of an equidistribution of roles

is to simply have each agent randomly choose its role with
equal probability. This method requires no communication
between agents but does result in a large amount of role
switching. Method 3 is used as a baseline comparison for
the other two methods.

2.4 Mathematical model
A mathematical model of Method 1 provides evidence for

the significant effects that synchronization can have on a
distributed multi-agent system. To begin the analysis, we
define the following variables:

• M : number of agents

• N : number of roles

• t: current time step

• rolei, 1 ≤ i ≤ N : used to refer to a specific role in the
system

• mi(t), 1 ≤ i ≤ N : number of rolei agents at time t,
P

mi(t) = M



• pi(t) = mi(t)
M

, 1 ≤ i ≤ N : proportion of rolei agents
at time t

• µ: number of neighbors each agent has

• ǫ: probability that an agent makes a decision each time
step

Equation 1 gives the expected proportion of rolei agents
at time t+ 1 based on the distribution of roles at time t:

qi(t+ 1) = (1 − ǫ)pi(t) + ǫzi(t+ 1). (1)

The first part of Equation 1 gives the proportion of rolei

agents that do not update their role, and the second part
gives the number of agents that change to rolei. Note, the
second part includes agents that are in rolei that choose to
“switch to” rolei.

The number of agents that choose to switch to rolei at
time t + 1 is proportional to the number of agents that see
less rolei agents in their neighborhood at time t than any
other role. Equation 2 returns the probability that an agent
sees no more rolei neighbors than any other type and is
defined as

zi(t+ 1) =

min(µ,mi(t))
X

ai=0

min(µ,mj (t))
X

∀j 6=i,aj=ai

Ω, (2)

where

Ω = δ

 

µ−
N
X

k=1

ak

!

ψ(a1, a2, ..., aN , t)

γ(ai, ai, aj.1, ..., aj.N−1)
.

The summations in Equation 2 loop through all possible
combinations of values where the number of rolei agents is
less than or equal to all of the other role counts. In Equation
2, δ is Kronecker’s delta function and is defined as

δ(x) =



1, if x = 0
0, if x 6= 0

.

It is used to ensure that the sum of all ai values in Equation
2 is equal to the number of neighbors, µ.

Equation 2 enumerates all possible combinations of N-
tuples that sum to µ and have the first value less than or
equal to all other values in the tuple, i.e., it enumerates
all possible role counts that could be obtained where there
are no more rolei agents than any other role. Equation
3 calculates the probability of that combination of values
occurring given the current distribution of roles:

ψ(a1, a2, ..., aN , t) =
N
Y

i=1

ρ(ai,mi(t),
i−1
X

j=1

ai), (3)

where

ρ(a,m, s) =

 

µ− s

a

!

a−1
Y

i=0

m− i

M − s− i

gives the total probability of seeing a agents of a given role if
there are a total of m of them in the remaining population.
We say remaining population because if we were to take
out 3 agents of role1 from a population of 100 then there
are only 97 agents left to choose from when calculating the
probability of seeing role2 agents. An example is given below
to clarify these procedures.

Equation 4 returns the number of ai values that are equal
to the target value τ and is defined as

γ(τ, a1, a2, ..., aN) =

N
X

i=1

δ(τ − ai). (4)

Equation 4 is used to prevent over counting when calculating
zi(t+ 1). When computing zi(t+ 1), there will be combina-
tions of neighbors where the number of rolei agents is equal
to the number of rolej agents, and so the agent would have
equal probability of switching to rolei or rolej . Therefore,
when the probability of that configuration is calculated, it
needs to be divided by 2 to prevent over counting.

Finally, we calculate the new distribution of roles:

mi(t+ 1) = ⌊M ∗ qi(t+ 1)⌋. (5)

Equation 5 does not guarantee
P

mi(t) = M , and so, the
roles of the remaining M −

P

mi(t) agents are chosen with
probability directly proportional to qi(t+ 1).

2.4.1 An example
An example is given to clarify the analysis above. For the

example, M = 100, N = 4, µ = 4, the current number of
agents in each role are m(t) = (20, 30, 15, 35), and the goal
is to determine the value of z1(t+ 1).

First, we must determine all valid neighborhood configu-
rations where there are no more role1 agents than any other
role. To refer to a neighborhood configuration, a string of
four numbers will be used, e.g., 〈0, 0, 1, 3〉 refers to a neigh-
borhood configuration where there are zero role1 and role2
agents, one role3 agent, and three role4 agents. The con-
figuration 〈1, 0, 1, 2〉 would not be used when calculating
z1(t + 1) because there are less role2 agents than role1 a-
gents. Also, the configuration 〈0, 1, 2, 2〉 would not be valid
because the four numbers do not sum to µ = 4.

The configurations used when calculating z1(t + 1) are
〈0, 0, 0, 4〉, 〈0, 0, 4, 0〉, 〈0, 4, 0, 0〉, 〈0, 0, 2, 2〉, 〈0, 2, 0, 2〉,
〈0, 2, 2, 0〉, 〈0, 1, 1, 2〉, 〈0, 1, 2, 1〉, 〈0, 2, 1, 1〉, 〈0, 0, 1, 3〉,
〈0, 1, 0, 3〉, 〈0, 1, 3, 0〉, 〈0, 0, 3, 1〉, 〈0, 3, 0, 1〉, 〈0, 3, 1, 0〉,
〈1, 1, 1, 1〉. For each configuration, we calculate the probabil-
ity of that configuration occurring, i.e., we need to calculate
ψ from Equation 3 for each of the sixteen configurations
previously listed.

For brevity, only the details of calculating the probability
of seeing a 〈0, 2, 0, 2〉 neighborhood configuration are pre-
sented in detail. The probability of seeing exactly zero role1
and role3 agents, and two role2 and role4 agents is 30

100
∗ 29

99
∗

35
98

∗ 34
97

multiplied by the number of ways that configuration
could have been achieved. Let us refer to an agent’s neigh-
borhood as including nup, ndown, nleft, and nself . One valid
configuration the four neighbors could be in to give a count
of 〈0, 2, 0, 2〉 is nup = role2, ndown = role4, nleft = role4
and nself = role2. Table 1 shows the six valid states that the
neighbors could be in to make a 〈0, 2, 0, 2〉 neighborhood con-
figuration. The reason for the six configurations is because
there are

`

4
0

´

∗
`

4
2

´

∗
`

2
0

´

∗
`

2
2

´

= 1 ∗ 6 ∗ 1 ∗ 1 combinations. As

another example, there are
`

4
0

´

∗
`

4
1

´

∗
`

3
1

´

∗
`

2
2

´

= 1∗4∗3∗1 = 12
combinations for configuration 〈0, 1, 1, 2〉. Note that zero
appears twice in the configuration 〈0, 2, 0, 2〉 (for role1 and
role3), and so, the 〈0, 2, 0, 2〉 configuration would also be
taken into account when calculating z3(t + 1). To prevent
over counting the 〈0, 2, 0, 2〉 probability, ψ(0, 2, 0, 2, t) is
divided by 2 (Equation 4). Thus, the final total for the



nup ndown nleft nself

role2 role2 role4 role4
role2 role4 role2 role4
role2 role4 role4 role2
role4 role2 role2 role4
role4 role2 role4 role2
role4 role4 role2 role2

Table 1: The six possible states that the neighbors

could be in to make up a neighborhood configuration

of 〈0, 2, 0, 2〉.

〈0, 2, 0, 2〉 configuration is: 30
100

∗ 15
99

∗ 35
98

∗ 34
97

∗ 12 ∗ 1
2
. To

compute z1(t+1), this value is added to the values obtained
from the other fifteen configurations.

3. EXPERIMENTS AND RESULTS
We next perform an empirical exploration of the effects

of synchroneity on the three role updating procedures. For
each experiment, there are 100 agents arranged in a ten-
by-ten toroidal grid, all of the agents are initially in role1,
and they can communicate with the four neighbors in their
immediate neighborhood. Empirically, we found that using
different initial role distributions does not change the overall
results of the system, and so, for brevity, only one initial role
distribution is used throughout the remainder of the paper.

Experiment 1 looks at the overall behavior of the three
procedures over a wide range of ǫ values. Experiment 2
examines the average behavior of the role updating methods,
whereas Experiment 3 explores the details of individual runs.
Experiment 4 performs an in depth analysis of the relation-
ship between stability and synchroneity, and Experiment 5
looks at the relationship between convergence time and syn-
chroneity. Taken together, these experiments demonstrate
the significant effects that synchroneity can have on distrib-
uted decision making processes.

3.1 Experiment 1
The first experiment examines the overall effect of syn-

chroneity on system dynamics. We hypothesize that large
fluctuations from the equidistribution will occur when syn-
chroneity is high because agents will overcompensate for
those roles with lower attendance. Conversely, when syn-
chroneity is low, few agents will switch roles, and so, they
will slowly converge on the correct distribution. By scanning
through the full range of ǫ values at very small increments,
we can get an idea of the range of values that produce
oscillatory behaviors. For each value of ǫ between zero and
one taken at 5

1000
increments, one-hundred runs of the math-

ematical model and three methods are conducted for 1000
time steps. The attendance values for each one of the roles is
recorded each time step after t = 900. Once these values are
recorded, they are each plotted as a point along the y-axis
for the respective value of ǫ.

3.1.1 Mathematical model
Figure 1 shows the plots obtained when N = 4 and N = 6

roles for the mathematical model. The left-most plots of
Figure 1 (similarly Figures 2, 3, and 4) show the attendance
values for role1, and the right-most plots show the attend-
ance values for role2. Because the initial attendances for

ǫ scan, Mathematical model
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Figure 1: Attendance values obtained at the end of

one-hundred runs of the mathematical model.

ǫ scan, Method 1

 0

 20

 40

 60

 80

 100
Four roles
role1

at
te

nd
an

ce
Four roles
role2(3,4)

 0

 20

 40

 60

 80

 100

 0  0.5  1

Six roles
role1

epsilon

at
te

nd
an

ce

 0  0.5  1

Six roles
role2(3,4,5,6)

epsilon
Figure 2: Attendance values obtained at the end of

one-hundred runs when using Method 1.

the roles other than role1 are zero, the values obtained from
them will be similar, and so, the remaining role attendances
are not shown.

For both four and six roles, the mathematical model clear-
ly shows a point at which the system is unable to settle on
the desired role distribution. With high synchroneity, the
agents overcompensate for deviations from the equidistribu-
tion and constantly fluctuate around the desired state. As
synchroneity increases, so, too, do these fluctuations.

3.1.2 Methods 1 and 2
Figures 2 and 3 show the same experiments for Method

1 and Method 2, respectively. The range of attendance
values increases as synchroneity increases when Method 1
is used (Figure 2). With Method 1, the mean attendance
value appears to be close to the desired value, but the devi-
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Figure 3: Attendance values obtained at the end of

one-hundred runs when using Method 2.

ation increases as synchronization increases. Although the
mathematical model is based on Method 1, Figures 1 and
2 show a clear difference in behavior between the two pro-
cedures. In the mathematical model, the spatial relation-
ships are essentially ignored since the calculations determine
the expected, average behavior of the agents. Spatial rela-
tionships can have a significant affect on the dynamics of a
simulated system [8].

With Method 2, the mean decreases for role1 when syn-
chroneity is high, but the deviation from the mean does not
seem to be affected by the level of synchroneity in the system
(Figure 3). As synchroneity increases, the average attend-
ance value for role1 decreases. When synchroneity is very
high, all (or most) of the agents will switch out of role1 in the
first time step. Because of the stability of Method 2, some of
the agents will not switch from their role after the first time
step, leaving a number of individuals in a role other than
role1 for the remainder of the run. Thus, on average, there
will be less role1 agents than other roles when synchroneity
is at or near 1.0.

3.1.3 Method 3
Can the randomness in the choices the agents make be

the sole reason for the behavior seen in Figures 2 and 3?
If agents ignore the roles of their neighbors and choose a
role at random, would we see the same dynamics? Figure
4 shows the experiments for Method 3, and we see that the
dynamics are not the same as in Figures 2 and 3.

The way the agents use the information from their local
neighborhood certainly has an effect on the dynamics of
the system. When synchroneity is low, the range of val-
ues for Method 1 is lower than that of Method 3; however,
as synchroneity increases, the range of attendance values is
actually larger than the range produced by Method 3. With
Method 2, the information is used more appropriately, and
the range of attendance values is not significantly different
for any value of ǫ.

ǫ scan, Method 3
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Figure 4: Attendance values obtained at the end of

one-hundred runs when using Method 3.

3.2 Experiment 2
The previous experiments only show the attendance values

that were obtained over the last 100 time steps of the runs;
however, they do not show how the system behaves over
time. Figures 5 and 6 show the behavior of the first 1000
time steps averaged over 1000 runs for ǫ = 0.01, 0.5, and 1.0
for Method 1 and Method 2, respectively. The standard
deviation is shown every 75 time steps.

With Methods 1 and 2, the agents slowly reach an equi-
distribution of roles when ǫ = 0.01. On average, only one
agent is updating its role each time step, and so, large fluctu-
ations from the equidistribution are avoided. When ǫ = 0.5,
the agents quickly reach the desired distribution and do not
deviate far from the appropriate attendances. There does
not seem to be significant difference in the average behav-
iors between Methods 1 and 2 when ǫ = 0.01 and 0.5.

When epsilon = 1.0 a clear difference in behavior is seen
between the two methods. With both methods, oscillations
in attendance occur, but with Method 1 these oscillations
dampen and the attendance values begin to average the
desired state. With Method 2, the system continuously
switches between two configurations and is never able to
get out of this cycle. Although the average behavior shows
convergence to the desired state with Method 1, the standard
deviations are so high, that for any single run, the system
may be far from the equidistribution.

For Method 1, the average standard deviation throughout
the runs is 3.010 when ǫ = 0.01, 3.943 when ǫ = 0.5, and
18.396 when ǫ = 1.0. For Method 2, the average standard
deviation is 2.525 when ǫ = 0.01, 2.734 when ǫ = 0.5, and
3.854 when ǫ = 1.0. In general, the variance between runs
increases as ǫ increases. This trend is more noticeable for
Method 1 than for Method 2.

Plots for Method 3 are not shown here because there is
no significant difference between the behaviors of the runs
for the three values of ǫ. For small values of ǫ, the system
takes longer to reach the equidistribution of roles, but after
it has been reached, the average and standard deviations for
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Figure 5: Attendance values averaged over 1000 runs

for Method 1.

the attendance values are similar for the three values of ǫ.
Because the agents do not use the information from their
local neighborhood with Method 3, synchronization plays
little to no role in the long-term dynamics of the system.

3.3 Experiment 3
Lost in the previous two sets of experiments are the de-

tailed dynamics that can only be seen by viewing individual
runs. For the original and proposed role allocation proce-
dures, a run is conducted for ǫ = 0.01, 0.05, and 1.0. Figures
7 and 8 show a single run for each value of ǫ for Method 1 and
Method 2, respectively. A large amount of role switching
takes place when Method 1 is used. Even with very low
synchroneity, the agents are not able to settle in on a stable
configuration. Method 2 allows the agents to settle in on a
single stable configuration, except for when ǫ = 1.0.

To determine why the agents oscillate between two attend-
ance counts with Method 2 and ǫ = 1.0, we went through
several runs, and noticed the following: Occasionally, there
are pairs of neighboring agents that are in the same role and
have the same neighborhood configuration. These rolei a-
gents both see that there are no rolej agents in their neigh-
borhood and switch to rolej . In the next time step, they
both see no rolei neighbors, so they switch to rolei. The
only way for them to break out of this cycle is for one of
them to not act, and this event becomes less likely as ǫ ap-
proaches 1.0.

3.4 Experiment 4
If agents have to expend energy to switch roles, then one

Average runs, Method 2
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Figure 6: Attendance values averaged over 1000 runs

for Method 2.

of the goals of the system designer would be to minimize the
amount of times agents change their role. Experiment 4 is
used to determine the average amount of role switching that
occurs during each time step for Methods 1, 2, and 3. For
this experiment, 100 runs are conducted for each ǫ at 5

1000
intervals. The number of agents that switch roles during
each time step between steps 900 and 1000 of these 100 runs
is recorded and averaged.

Figure 9 shows the results for the three methods. With
Method 3, approximately ǫM(1 − 1

N
) agents switch their

role each time step. On average, ǫM agents will decide
to change their role, and because 1

N
of those agents will

randomly choose their own role, only ǫM(1 − 1
N

) agents
actually change roles. Thus, even when ǫ = 1, the random
procedure will not switch the role of every agent.

Surprisingly, the same is not true for Method 1. The num-
ber of agents that switch their role is directly proportional to
ǫ. In the worst case, when ǫ = 1.0, every agent is switching
its role every time step. Clearly, this behavior is undesirable
as agents would expend large amounts of energy switching
roles. Although we can control the amount of role switching
by lowering ǫ, the system is never able to reach a stable con-
figuration where agents will not choose to change their role
when given the opportunity.

When using Method 2, agents are able to settle into their
roles. Only when synchroneity is very high (ǫ > 0.995) are
the agents not able to settle in on a stable configuration.
With six roles, the system always reached a stable configu-
ration, regardless of ǫ. As the number of roles increases, the
number of stable neighborhood configurations also increas-
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Figure 7: Attendance values for a single run for

Method 1.

es. Thus, agents are less likely to switch roles as the number
of roles increases, and the system will be more stable.

A linear relationship between ǫ and the number of role
switches is seen with Method 1, but the same is not true
with Method 2. Only in the most extreme cases does syn-
chronization have an effect on Method 2. Figure 10 shows
the values of ǫ between 0.995 and 1.0 at 1

100000
increments

with Method 2 and four roles. A sharp transition in system
dynamics occurs at the highest levels of synchronization.
For a majority of the values of ǫ, the agents are able to
settle in on a single, stable configuration, but when all, or
most, of the agents are working simultaneously they cannot
reach a stable configuration. Although the two updating
procedures are similar, they exhibit very different behaviors
under different levels of synchroneity.

3.5 Experiment 5
Experiment 5 examines the average amount of time re-

quired for the system to converge with Method 2. For each
value of ǫ at 5

1000
increments, 1000 runs are conducted for

both four and six roles. We say that the system has con-
verged if every agent determines that it would not switch its
role if given a chance to. The time at which the networks
converge is averaged over 1000 runs for each value of ǫ. If
any of the 1000 runs do not converge within 10000 time steps
for some particular value of ǫ, the data at that point is not
plotted. This only occurred with four roles and ǫ = 1.0.

Figure 11 shows the average amount of time required for
the systems to converge for four and six roles. When ǫ is
small, the system takes a long time to converge because a

Single runs, Method 2
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Figure 8: Attendance values for a single run for

Method 2.

small number of agents make a decision each time step. As
ǫ increases, the system is able to converge faster. Howev-
er, there is a point at which the time to converge starts
to increase again because of the neighboring-agent problem
described in Section 3.3. The increase occurs for both four
and six roles, but because there are more stable configura-
tions when six roles are used, the increase is not as significant.

4. CONCLUSIONS
Emergent coordination techniques for controlling the be-

haviors of distributed multi-agent systems are attractive to
scientists and engineers because of their simplicity, scalabili-
ty, and reliability. Agents communicate with only the agents
in their local neighborhood (or not at all) and do not require
global information when making decisions. Also, because
the systems are distributed, there is no single point of failure,
and agents can self adjust if members of their team can no
longer perform their tasks. However, formally modeling and
predicting the behaviors of emergent systems can be difficult
because of the non-linear system dynamics that result from
the interactions of hundreds or even thousands of agents.

The goal of this paper is to show the significant role syn-
chronization can play in distributed, multi-agent decision
making systems. Empirical results show that the level of
synchronization has a large effect on the system dynamics,
and thus, team’s performance. High synchronization tends
to cause difficulty in system convergence because the system
becomes too reactive to fluctuations from the desired state.
Low synchronization allows for a more reliable convergence
to stable configurations, although time to converge increas-
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converge using Method 2 over all values of ǫ.

es as synchroneity decreases. With moderate amounts of
synchroneity the system can quickly converge on, and not
overshoot, the desired state.

The results also show that the effects of synchronization
can be very different from one system to the next. We
observe a linear relationship between the system dynam-
ics and the level of synchronization when one role allocation
procedure is used, whereas a sharp transition from stable to
unstable behavior is observed when using a slightly different
procedure. Designers of such distributed systems should be
aware of the effects that various degrees of synchronization
could have on their systems’ dynamics and performance.

This paper opens up the possibility of future work to
further explore the relationship between system dynamics
and synchronization by investigating questions such as: How
will a distributed system’s dynamics be affected by the con-
nectivity of the agents combined with the amount of syn-
chronization in the system? The two examples shown in
this paper illustrated both linear and non-linear relation-
ships between system dynamics and synchronization, but
are there more? Are there distributed systems that benefit
from high levels of synchronization? This paper is a first step
towards showing how important these and other questions
are when studying or designing distributed decision making
processes that utilize emergent coordination.
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