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ABSTRACT
Modularity is thought to improve the evolvability of biologi-
cal systems [18, 22]. Recent studies in the field of evolution-
ary computation show that the use of modularity improves
performance and scalability of evolutionary algorithms for
certain applications. [5, 12, 15, 16, 17]. The effects of in-
troducing modularity to evolutionary search, however, are
not well understood. This paper focuses on analyzing the
effects of modularity on evolutionary computation. In par-
ticular, we analyze the effects of modular representations on
the search space bias.

Categories and Subject Descriptors
I.2.4 [Artificial Intelligence]: Knowledge Representation
Formalisms and Methods —Representations (procedural and
rule-based); I.2.8 [Artificial Intelligence]: Problem Solv-
ing, Control Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Modularity, Search Algorithms, Genetic Algorithms

1. INTRODUCTION
In this paper, we analyze the effects of module encapsula-

tion on the structure of search spaces. The introduction of
modules in a problem representation can alter the structure
of the corresponding search space, which in turn may affect
how easy or hard it is for a evolutionary algorithm (EA) to
find a solution. Specifically, we want to study the follow-
ing aspects of search space structure: the size of the search
space and the average distance to a solution.

Previous research on modularity in EAs focuses primar-
ily on developing effective empirical techniques to discover,
encapsulate and use modules in EAs. Modularity is consid-
ered to be an important factor in achieving complexity and
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scalibility [5, 12, 15, 16, 17]. When incorporating modular-
ity into the representations of an EA, the two fundemantal
questions that we need to answer are: how many modules
are there and what are the compositions of each of the mod-
ules. The definition of modules can be defined statically at
the beginning or dynamically during a search. Approaches
that have been studied include keeping the number and con-
tent of modules static [6, 7, 12, 13], keeping the number of
modules static but evolving the content of modules dynami-
cally [15, 19], and evolving both the number of the modules
and the content dynamically [2, 20, 21]. Static definition of
the number and content of modules requires a priori knowl-
edge of the solution in order to define useful modules.

Previous studies have used both explicit and implicit meth-
ods to discover the composition of modules. Explicit meth-
ods introduce special mechanisms into an evolutionary algo-
rithm for module discovery and encapsulation. For example,
Rosca and Ballard [21] use frequency and fitness evaluation
to discover candidate modules in their population. Alterna-
tively, candidate modules may be selected and encapsulated
randomly [3, 4]. In both cases, the modules are then eval-
uated based on their usage and performance and the better
ones are kept and the rest are released into their original
form. Cooperative coevolution uses subpopulations each of
which evolves a single module [20]. Representative modules
from each subpopulation are then combined into a complete
solution for fitness evaluation. Implicit methods, on the
other hand, use problem representations and operators that
allow modules to emerge in the representation [10, 23]. For
example, the use of dynamically evolved non-coding regions
in representations is one way to achieve this. The insertion
of the non-coding regions during the evolutionary process
changes the relative distance of the encoded information.
Genes that are closer together are less likely to be split apart
by crossover and implicitly form modules.

In this paper, we provide a basic combinatorics analysis
of the search space structure before and after module encap-
sulation. First, we develop a framework for modular seach
spaces. In this framework, encapsulating a module is seen
as a search space transformation. Using this framework, we
analyze the changes in the distance to a solution. Using the
results of our analysis, we devise an indicator that can be
used to predict beneficial module encapsulation. Our empir-
ical analysis confirms that this indicator is able to predict
the effects of encapsulating a module. Based on this analy-
sis, we are able to predict, under certain assumptions, when
and why encapsulating a module will be beneficial for the
search.
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2. BASIC DEFINITIONS
We will begin by defining a framework for modular search

spaces upon which we can build our mathematical model.
Using this framework, we can analyze search space differ-
ences between a canonical GA and a modified GA aug-
mented with modules. The definitions and analyses assumes
a binary representation, but can be extended to multichar-
acter representations. In our definitions, we use standard
set theory and formal languages notation, i.e. see [11].

2.1 Search Spaces
The basic components of our framework are the genotype

space, the phenotype space, and the rules that map from
the genotype to the phenotype space. Primitives are the
atomic components of problem representation that are used
to encode solutions. Modules are substrings of interest and
may contain two kinds of symbols: primitives and previously
defined module names. Our module definition is based on
the previous work ??

The genotype space or representation space is the space
of all the strings that encode candidate solutions. The el-
ements of the genotype space are strings over the alphabet
of primitives and module names. A genotype space Sg is a
5-tuple:

Sg = 〈P,M, Σg, l,R〉
where, P is a set of primitive symbols; M is a set of module
symbols; Σg ⊆ P ∪M is the genotype space alphabet; l is
the length of all genotype strings when expanded; and R is
the set of module defining rules.

The phenotype space Sp is the space of all possible can-
didate solutions. The elements of the phenotype space are
strings over the alphabet of primitives only and are fixed in
length.

For a given genotype space Sg = 〈P,M, Σg, l,R〉, the set
of module defining rules, R, is a set of rewriting rules:

R = {M1 → w1, ..., Mi → wi, ...}
where, Mi → wi is a rewriting rule defining module Mi;
Mi ∈ M is a symbol naming the module; wi ∈ {P ∪
{M1, M2, ..., Mi−1}}∗ is the module defining string; and |wi| ≤
l, since we consider modules to be substrings of candidate
solutions. There is one defining rule in R for each module
symbol in M, hence |R| = |M|. We define the size of a
module to be the length of its defining string |wi|. A mod-
ule is of order zero if its defining substring consist solely of
primitives, and it is of order n if its defining substring con-
sist of primitives and symbols naming modules of at most
order n− 1.

Module defining rules are used to expand a genotype into a
phenotype through an iterative process of replacing module
names with their corresponding definitions until a candidate
solution consisting of only primitives is obtained. Let us as-
sume s be a string over {P ∪M} for some genotype space
Sg = 〈P,M, Σg, l,R〉. We define the expanded form of
string s as ExpandR(s), where ExpandR : {P∪M}∗ 7→ P∗ is
the expanding function for module defining rules R. The ex-
panding function applies the rewriting rules in R to its input
s until a string solely over P is obtained. That string is the
output of ExpandR. In this case, we say that ExpandR(s)
has been generated from s using rewriting rules R. No-
tice that, our definition of R guarantees that for any string
s ∈ {P ∪ M}∗, ExpandR(s) ∈ P∗ can be computed in a

finite amount of rewriting rule applications. Thus, the ele-
ments of the genotype space Sg, denoted by L(Sg), are all
strings over the genotype space alphabet Σg that expand to
strings of length l over P∗:

L(Sg) = {s ∈ Σg
∗ | |ExpandR(s)| = l}

Expanding all of the elements in genotype space into their
phenotype form gives us the phenotype space Sp. We define
the elements of the the phenotype space, Sp, denoted by
L(Sp) as the following multiset 1.

L(Sp) = {| ExpandR(s) | s ∈ L(Sg) |}
where, L(Sg) be the elements of genotype space Sg. L(Sp)
is the multiset of all strings in the genotype space Sg in their
expanded form. For the remainder of this paper, references
to search space will refer to the phenotype space.

As we will see, multiple elements in L(Sp) may expand
to the same element in L(Sp) The multiplicity 2 of each
element in the phenotype space is determined by the number
of genotypes that expand to the same phenotype. Hence, by
definition, the size of the genotype space is equal to the size
of the phenotype space, |L(Sg)| = |L(Sp)|. Notice that,
also by definition, the elements of L(Sp) are fixed length l
strings over P and the elements of L(Sg) are variable length
strings over Σg. Clearly, ExpandR is the function used to
map the genotype to the phenotype on our modular search
spaces. Therefore, for this paper, the genotype to phenotype
mapping is a generative process determined solely by the
module creating rules in R.

2.2 Module Encapsulation
Module encapsulation or module creation is the process of

naming a substring of interest with a new alphabet symbol.
This process changes the structure of the search space by
adding a new element to the genotypic alphabet and, more
fundamentally, by adding a new rule to R. Encapsulation
of a module, E : Sg ×Rk 7→ Sg is defined as follows:

E(Sg, Mk → wk) =

〈P,M∪ {Mk}, Σg ∪ {Mk}, l,R∪ {Mk → wk}〉
where, Sg = 〈P,M, Σg, l,R〉 is a genotype space, Mk → wk

is the rewriting rule defining the new module to be encap-
sulated, Mk is a new module symbol, wk is a string over
{P ∪M}, and |wk| ≤ l.

Given a module length lm, the complete m-module set is
the set of all possible permutations of primitives of length
lm. The complete-P concept is used to define Complete m-
module set.

We can calculate the size of a search space that includes
σm modules in its alphabet using the following equation.

|L(S)| =
b l

lm
c∑

n=0

2l−lmnσn
m

(
l − (lm − 1)n

n

)
(1)

where b l
lm
c is the maximum number of modules length

of lm that a string of length l can include. Notice that,
the formula applies only on search spaces where all modules
have size lm. The proof for Equation 1 is given in [8].
1A multiset or a bag is a set that allow repeated elements
and it is denoted by {| |}
2Let N be a multiset and m ∈ N , The multiplicity of m,
denoted by |N |m, is the number of times the element of m
is repeated in multiset N .
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2.3 Analysis Metric
For this study, we will examine the effects of module en-

capsulation on the average Hamming distance from all el-
ements in a search space to the solution. We focus this
analysis on binary representations and make the assump-
tion that there is fitness distance correlation (FDC) in the
problem representation. Hamming distance is suitable to
measure the distance in binary representations. Using the
FDC framework with Hamming distance is one way to pre-
dict the performance of the mutation based algorithms such
as genetic algorithms [1, 14]. Therefore, using Hamming
distance is appropriate to analyze the effect of module en-
capsulation on the search.

Suppose px, py ∈ L(Sp), then the distance between px and
py in phenotype space is

∆(px, py) = Hamming distance(px, py)

where, the Hamming distance between two strings is simply
the number of positions at which the strings differ in value.
The average Hamming distance to the solution, denoted by
∆avg(s), is a measure of the average distance between a
solution string ∆avg(s) and every other string in the search
space. In a uniformly distributed binary search space, it is
easy to see that the expected value of ∆avg(s) will be l/2. If
∆avg(s) decreases after a search space transformation, the
elements of the new search space are, on average, closer to
the solution. If ∆avg(s) increases, the elements of the new
search space are, on average, further away from the solution.

Let us define the average Hamming distance to solution
formally. Assume that p, s ∈ L(Sp) and that s is the solution
string. The average Hamming distance to solution s is:

∆avg(s) =

∑
{p∈L(Sp)}∆(p, s)

|L(Sp)|
Next, let us assume that Sp1 is a search space with a solu-
tion string s, and Sp2 = E(Sp1). In addition, ∆avg1(s) and
∆avg2(s) are the average Hamming distances to solution in
Sp1 and Sp2, respectively. We consider three cases. Sp2 has
a positive relative search space distance bias or, simply, a
positive distance bias with respect to Sp1 iff

∆avg1(s) > ∆avg2(s)

Sp2 has a negative distance bias with respect to Sp1 iff

∆avg1(s) < ∆avg2(s)

Sp2 has no distance bias with respect to Sp1 iff

∆avg1(s) = ∆avg2(s).

In other words, assuming Sp2 = E(Sp1), a positive distance
bias of the resulting space relative to the initial space indi-
cates that the module encapsulation results in a space with
elements that are, on average, closer to the solution. On the
contrary, a negative distance bias indicates that the module
encapsulation results in a space with elements that are, on
average, farther away from the solution.

We give a definition for the probability density function of
the distance to the solution. The probability density func-
tion, rd, is defined as:

id =
Σp∈L(Sp)[δd(p, s)]

|L(S)|

where

δd(p, s)

{
1 if ∆(p, s) = d
0 otherwise

and ∆(p, s) is the Hamming distance between an arbitrary
individual p and the solution string s. rd is the probability
of a string having a Hamming distance of d from the solution
string.

Last, we use the following equation to calculate average
Hamming distance:

∆avg =

l∑

d=0

P (d)d (2)

where P (d) = id is the probability of a randomly chosen
string having a Hamming distance of d from the solution.

3. THEORETICAL ANALYSIS
We study the effects of fixed length modules on distance

bias in a search space in two ways. First, if we do not know
which modules of a given length are good and which modules
are bad, one approach is to make available all modules of a
given length in the problem representations. This analysis
examines the complete module set as defined in section 2.2.
A more ideal situation is when we have information about
the problem that allows us estimate what could be good and
bad modules. We repeat the same analysis for the two cases
in which we encapsulate only good modules and only bad
modules to study the effects of using modules that are or
are not partial solutions.

3.1 Complete Module Set Encapsulation
If we cannot distinguish good and bad modules, one ap-

proach is to include all modules and allow the search al-
gorithm to dynamically select which ones to use. Let S0

and S1 be the search spaces before and after the encapsula-
tion, respectively. Let Σ0 = {0, 1} be the alphabet of search
space S0. E(S0) → S1. Let Σ1 be the alphabet of S1 and
Σ1 = {0, 1, M1, M2, ..., Mk} where k = 2lm and |Mi| = lm
for 1 ≤ i ≤ k. Also, let l be the phenotype length and lm be
the module length.

Lemma 1. The average Hamming distance to solution in
search space S1 can be calculated using the following formula:

∆avg =

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

|L(S)|
l∑

d=0

(
l

d

)
d

Proof. By Equation 2

∆avg =

l∑

d=0

P (d)d

where P (d) = id.
Let us derive id for a search space where a complete mod-

ule set is encapsulated and included in the alphabet.
(

l
d

)
gives the number of ways to choose d bits that differs from

the solution string in a string of length l and
∑b l

lm
c

n=0

(
l−(lm−1)n

n

)
gives the number of ways to place n modules of length lm in
a string of length lg. Multiplication of these two expressions
gives the number of all possible strings that have n mod-
ules, for all n 0 ≤ n ≤ b l

lm
c, and are d Hamming distance
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away from the solution. Note that b l
lm
c gives the maxi-

mum number of modules that can be in a string to keep the
phenotype string length l constant. Dividing the number of
strings that have a Hamming distance of d from the solu-
tion by the search space size, L(S), gives the ratio of strings
that have a Hamming distance of d from the solution in the
search space.

Thus, we can write id as:

id =

(
l
d

)

|L(S)|

b l
lm
c∑

n=0

(
l − (lm − 1)n

n

)

If we rewrite ∆avg formula using id, we obtain:

∆avg =

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

|L(S)|
l∑

d=0

(
l

d

)
d.

QED.

Lemma 2. Encapsulating the complete set of modules of
length lm and including them into the alphabet of primitives
without replacement does not change the distance bias in the
search space.

Proof. Let ∆avg0 and ∆avg1 be the average Hamming
distance in search spaces S0 and S1, respectively.

∆avg0 =

l∑

d=0

(
l
d

)

2l
d

For S1,

∆avg1 =

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

|L(S1)|
l∑

d=0

(
l

d

)
d.

and

|L(S1)| =
b l

lm
c∑

n=0

2l−lmnσn
m

(
l − (lm − 1)n

n

)
.

where σm is the number of modules in the alphabet and
σm = 2lm . We can rewrite ∆avg1 by using |L(S1)|:

∆avg1 =

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)
∑b l

lm
c

n=0 2l−lmnσn
m

(
l−(lm−1)n

n

)
l∑

d=0

(
l

d

)
d.

We can rearrange the expression in the following way:

∆avg1 =

∑b l
lm
c

n=0

(
l−(lm−1)n

n

)

2l
∑b l

lm
c

n=0

(
l−(lm−1)n

n

)
l∑

d=0

(
l

d

)
d.

This expression reduces to:

∆avg1 =

l∑

d=0

(
l
d

)

2l
d

which is equal to ∆avg0 .

∆avg1 = ∆avg0

In summary, there is no distance bias change when encapsu-
lating a complete set of modules of size lm and adding them
to the alphabet without replacing the primitives. QED.

3.2 Encapsulation of a Module Fully Included
in the Solution

We expect that encapsulating a good module that is fully
included in the solution will reduce the distance to the solu-
tion by promoting the strings that are closer to solution in
Hamming distance. This promotion should contribute to a
shorter average Hamming distance in the search space. Such
case is illustrated in the following example.

Let S0 = {000, 001, 010, 011, 100, 101, 110, 111} be the geno-
type space before encapsulation where Σ0 = {0, 1} and l = 3
and

S1 = {000, 001, 010, 011, 0M, 100, 101, 110, 111, 1M,M0,M1}
be the genotype space after the encapsulation of M = 11.
The alphabet now includes M as well as 0 and 1 and the phe-
notype length remains fixed at l. Assume that the solution
string is 111. id gives the ratio of the elements that are d dis-
tance away from the solution. For instance, i2 = 3

8
means

that 3
8

of the strings in the search space are a Hamming

distance of two from the solution. Similarly, i0 = 1
8
, i1 =

3
8
, i2 = 3

8
, i3 = 1

8
. In S1, i0 = 3

12
, i1 = 5

12
, i2 = 3

12
, i3 = 1

12
.

In this example, we can observe that the distance to solution
decreases with the encapsulation of module M. The ratio
of strings that are at Hamming distance of zero from the
solution in S1 is twice as large as the one in S0. Similarly,
the ratio of the number of strings to search space size after
module encapsulation for one step away is larger than the
one in the original search space, S0. Thus, the ratio of the
strings that are closer to the solution string increases after
the encapsulation of a good module. The ratio of the strings
with larger distance to solution, on the other hand, becomes
smaller as a result of encapsulation.

Let us define the probability density function id. id applies
to problems whose solutions have the property of location
independent modularity. In other words, an encapsulated
“good” module is fully valid at any location in the solution.
The OneMax problem, on which we focus this paper, has
this property. We define the probability density function
for the problem class with location independent modular
problems as follows:

id =
1

|L(S)|

b l
lm
c∑

n=0

(
l − lmn

d

)(
l − (lm − 1)n

n

)
(3)

where
(

l−(lm−1)n
n

)
gives all possible ways to place n mod-

ules in a string and
(

l−lmn
d

)
gives the number of ways to

choose d bits that differ from the solution string of length
l. The n modules of length lm occupies lmn number of bits
and this part of the string does not contain the any of the d
unmatching bits. Therefore, these d bits are located in the
remaining l − lmn length of the string. Summing the mul-
tiplication of these two terms over all n gives all possible
strings with Hamming distance d to the solution string. If
we divide this value by the search space size, we obtain the
probability density function of d which we denote with id in
this paper.

Using Equation 2, we can derive the average Hamming
distance for good module encapsulation:

∆avg =

l∑

d=0

idd
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Figure 1: Comparison of the average Hamming dis-
tance to the solution in the three structurally dif-
ferent search spaces: the alphabets which consist of
primitives and a good module of length two, no mod-
ules, and a bad module of length two. The x-axis
shows the phenotype length and the y-axis shows
the average Hamming distance to the solution. The
distance is smaller when a good module is encapsu-
lated and larger when a bad module is encapsulated.
The larger the phenotype length, more prominent
the effect of module encapsulation on the average
Hamming distance to solution measure.

Rewriting ∆avg using the formula of id given above:

∆avg =

l∑

d=0

d
1

|L(S)|

b l
lm
c∑

n=0

(
l − lmn

d

)(
l − (lm − 1)n

n

)

gives us a general formula for calculating average Ham-
ming distance in a search space that includes all primitives
and a module that is fully included in the solution string.
If we replace the values of lm in the formula for the case of
encapsulating module M size of 2, we obtain:

∆avg =

l∑

d=0

d
1

|L(S)|

b l
2 c∑

n=0

(
l − 2n

d

)(
l − n

n

)

To determine the effect of good module encapsulation on av-
erage Hamming distance, we compare the average Hamming
distance before and after encapsulation. Assume ∆avg0 and
∆avg1 are the average

Hamming distance before and after the encapsulation, re-
spectfully. To compare, we evaluate ∆avg0 and ∆avg1 , for
values of l ≥ lm. We exclude values for l < lm, since l
can not be negative and for nonnegative values of l that are
smaller than the module length, ∆avg0 and ∆avg1 are equal
because there are no modules. Figure 1 shows the compar-
ison between ∆avg0 and ∆avg1 . ∆avg0 is larger than ∆avg1

for all l values. This result support our initial argument that
the average Hamming distance after encapsulation of a good
module is smaller than the one before the encapsulation.

3.3 Encapsulation of a Module Fully Excluded
From the Solution

We expect that encapsulating a bad module will have a
counter effect, increasing average Hamming distance to the
solution. Bad modules increase the average Hamming dis-
tance because they result in a larger search space with new
strings that increase the average Hamming distance to the
solution because they are at least bad module length dis-
tance or further away from the solution. For instance, as-
sume that S0 and S1 are the search spaces before and after
the encapsulation, respectively.

S0 = {000, 001, 010, 011, 100, 101, 110, 111}
where Σ0 = {0, 1} and

S0 = {000, 001, 010, 011, 0M, 100, 101, 110, 111, 1M,M0,M1}
where Σ0 = {0, 1,M}. We assume that the solution string
is 111 and the module M = 00. Note that module M is not
a part of the solution string. Let us look at the probability
density of each distance value d in each search space. In
S0, i00 = 1

8
, i10 = 3

8
, i20 = 3

8
, i30 = 1

8
In S1, i01 =

1
12

, i11 = 3
12

, i21 = 5
12

, i31 = 3
12

The probability density
of the shorter distances decreases as we observe in i01 < i00

and i11 < i10 . On the other hand, the probability density of
longer distances increases as seen in i21 > i20 and i31 > i30 .
We can calculate the average Hamming distance of each case
for this example.

∆avg0 =

l∑

d=0

id0d = 1.5

and

∆avg1 =

l∑

d=0

id1d = 1.83

Hence, ∆avg1 > ∆avg0 . In other words, the average Ham-
ming distance of the search space with a bad module is larger
than that of the search space without a bad module. Let us
define the probability density function for the search space
that has a bad module in its alphabet.

id =
1

|L(S)| (
(

l

d

)
+

b l
lm
c∑

n=1

f(n)

(
l − (lm − 1)n

n

)
) (4)

where f(n) is

f(n) =

{ (
l−lmn
d−lmn

)
if d > lm

0 otherwise
(5)

where
(

l−(lm−1)n
n

)
gives all possible ways to place n mod-

ules in a string of length l. If d < lm, which is true only
when there are no modules in the string (since a module in-
troduces lm number of unmatching bits into the string),

(
l
d

)
gives all the possible strings that do not include any module,
and d is the distance away from the solution. The rest of the
expression is zero since it enumerates the strings that have
at least one module. If d ≥ lm, we can include strings that
have modules as well as the ones that do not have any mod-
ules. The term

(
l
d

)
enumerates the strings that have no mod-

ules and are d distance away from the solution. The second

term,
∑b l

lm
c

n=1 f(n)
(

l−(lm−1)n
n

)
) gives all possible strings that
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include at least one module and are d distance away from
the solution. lm ∗ n of d unmatching bits come from the n
modules. The rest of the d unmatching bits, d−lmn, are enu-
merated by

(
l−lmn
d−lmn

)
. Multiplying

(
l−lmn
d−lmn

)
with

(
l−(lm−1)n

n

)
gives all possible strings that are d bits away from the so-
lution and have n modules. Summing up the number of

strings for all n ≥ 1 gives
∑b l

lm
c

n=1 f(n)
(

l−(lm−1)n
n

)
) gives all

possible strings that are d distance away from the solution
and include at least one module.

Using Equation 2 and Equation 4, we can derive the ex-
pression to calculate the average Hamming distance to the
solution:

∆avg =

l∑

d=0

(
d

|L(S)| (
(

l

d

)
+

b l
lm
c∑

n=1

f(n)

(
l − (lm − 1)n

n

)
))

where f(n) is given in Equation 5.
How does the average Hamming distance change when a

bad module is encapsulated? In order to answer this ques-
tion, we compare ∆avg before and after the encapsulation.
We use the OneMax problem for this mathematical analysis.
Assume that S0 is the search space before the encapsulation
of M and Σ0 = {0, 1} is the alphabet of the search space S0.
Assume also that S1 is the search space after the encapsula-
tion of M and Σ1 = {0, 1, M} is the alphabet of the search
space S1. Module M is a substring of length lm consisting of
all 0’s. It is not a part of the solution string of the OneMax
problem which consists of all 1s. Let us write ∆avg0 .

∆avg0 =

l∑

d=0

d

|L(S′)|

(
l

d

)

where |L(S′)| = 2l. If we place this into the formula above:

∆avg0 =

l∑

d=0

d

2l

(
l

d

)
=

l

2

Let us write ∆avg1

∆avg1 =

l∑

d=0

d(
1

|L(S1)| (
(

l

d

)
+

b l
lm
c∑

n=1

(
l − lmn

d− lmn

)(
l − (lm − 1)n

n

)
))

where |L(S1)| =
∑b l

lm
c

n=0 2l−lmn
(

l−(lm−1)n
n

)
. Replacing |L(S1)|

by its equivalence, we can rewrite ∆avg1 as:

∆avg1 =

l∑

d=0

d
1

∑b l
lm
c

n=0 2l−lmn
(

l−(lm−1)n
n

)

(

(
l

d

)
+

b l
lm
c∑

n=1

(
l − lmn

d− lmn

)(
l − (lm − 1)n

n

)
)

If, for example, the module encapsulated is size of lm = 2,

∆avg1 =

l∑

d=0

(
1

|L(S1)| (
(

l

d

)
+

b l
2 c∑

n=1

(
l − 2n

d− 2n

)(
l − n

n

)
))d

where |L(S1)| = 2l ∑b l
2 c

n=0(
1
4
)n

(
l−n

n

)
. Using Equation [9], |L(S1)|

can be rewritten as follows:

|L(S1)| = 2l

√
2
((

1 +
√

2

2
)l+1 − (

1−√2

2
)l+1).

If we rewrite ∆avg1 using the equation above, we obtain:

∆avg1 = (

∑l
d=0(

(
l
d

)
+

∑b l
2 c

n=1

(
l−2n
d−2n

)(
l−n

n

)
)d

2l√
2
(( 1+

√
2

2
)l+1 − ( 1−√2

2
)l+1)

Figure 1 gives the comparison of ∆avg0 and ∆avg1 . ∆avg1

is larger than ∆avg0 for all l ≥ 0. In other words, encap-
sulating a bad module increases the average distance to the
solution in the phenotype space for the OneMax problem.
Therefore, we can conclude that, for the OneMax problem,
encapsulating a bad module increases the average Hamming
distance to solution in the phenotype space.

4. EXPERIMENTAL ANALYSIS
In Sections 2 and 3, we present a simple analysis of mod-

ule encapsulation on the bias of the search space. Next,
we compare values calculated from those equations with an
empirical validation using the OneMax problem.

4.1 Method
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Figure 2: Comparision of the theoretical results
of the average Hamming distance to a solution for
search spaces with a good module, no modules, and
a bad module. The x-axis shows the encapsulated
module length lm = {2, 4, 8, 16, 32, 64} and the y-axis
shows the average Hamming distance.

We first use our equations from Section 3 to calculate the
average distance to solution for a 256-bit OneMax problem
with no modules, one good module, and one bad module. A
good module is a subsequence of all ones; a bad module is a
subsequence of all zeros. Figure 2 shows the theoretical re-
sults for the average distance to bias metrics for the module
size, lm ∈ {2, 4, 6, 8, 16, 32, 64}. As expected, the theoreti-
cal data show that encapsulating a good module decreases
the average distance to solution while encapsulating a bad
module increases the average distance to solution.

In comparison, our empirical validation runs evaluate the
fitness of a GA also on a 256-bit OneMax problem. We use
the following parameter values for our GA runs: the muta-
tion rate is 0.01, the selection type is tournament with size
4, the population size is 500, and the number of generations
is 500. We perform 100 trials for all experiments and re-
port average values with their 95% confidence interval. Our
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fitness function is the ratio of the number of 1s over the in-
dividual length. We run GA using the same module sizes as
the theoretical data above and observe if the varations in the
experiment results correlate with the changes we obtained
in our theoretical results.

As our theoretical analysis focuses only on the search
space and does not take into account the dynamics and the
characteristics of any specific search algorithm, we expect
only qualitative verification of our results.

4.2 Results
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Figure 3 shows the results of our empirical runs. We
compare the performance of a GA with no modules, with
one good module, with bad module, for module length,
lm ∈ {2, 4, 6, 8, 16, 32, 64}. In addition, we also include
GA runs using one randomly generated module. The y-
axis shows the best fitness and the x-axis shows the module
length, lm. The GA with a good module outperforms the
GA with no modules and the GA with no modules outper-
forms the GA with a bad module for all lm values. It is
evident that the performance of GA with no modules is not
affected by the module size changes. The performance of
the GA with a good module also remains unaffected by the
module length. While increasing the good module length
may improve the ability to find a solution, it may also make
it more difficult to evolve a solution of the correct length. As
expected, the performance of the GA with bad module de-
grades as module length increases. The GA with a random
module case is out of the scope of this paper. It is, however,
given to compare its performance with the other three cases.
These results are comparable to the performance predicted
by our theoretical results.

Also, as module length increases linearly, the relative de-
crease in performance from slows down. We observe a sim-
ilar behavior in our theoretical results where the larger lm
has smaller effect on the average distance to solution.

5. CONCLUSION
In this paper, we investigate the effects of module encap-

sulation on the average Hamming distance to a solution.
Encapsulating a module increases the size of the alphabet
and consequently the size of the search space. We define a
theoretical framework on which to describe search spaces for
binary representations and analyze the impact of adding a
complete set of modules, a good module, and a bad module
to a binary search space. We then compare our theoretical
results to empirical runs of a GA on the OneMax problem.

Our theoretical results indicate that encapsulating a com-
plete module set does not affect the average Hamming dis-
tance in the search space. In other words, encapsulating
without favoring a good or a bad module does not change
the average hamming distance to solution. Encapsulating a
good module, however, decreases the average Hamming dis-
tance solution while encapsulating a bad module increases it.
These results correlate with our experimental results which
show that encapsulating a good module improves the per-
formance of GA while encapsulating a bad module decreases
performance. These results also underscore the importance
of selecting modules intelligently when using modular rep-
resentations for search.
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