
Decision Tree Classifier For Network Intrusion Detection

With GA-based Feature Selection

Gary Stein
Computer Engineering

University of Central Florida

Orlando, FL 32816-2362

gstein@mail.ucf.edu

Bing Chen
Computer Science

University of Central Florida

Orlando, FL 32816-2362

bchen@cs.ucf.edu

Annie S. Wu
Computer Science

University of Central Florida

Orlando, FL 32816-2362

aswu@cs.ucf.edu

Kien A. Hua
Computer Science

University of Central Florida

Orlando, FL 32816-2362

kienhua@cs.ucf.edu

ABSTRACT
Machine Learning techniques such as Genetic Algorithms and

Decision Trees have been applied to the field of intrusion

detection for more than a decade. Machine Learning techniques

can learn normal and anomalous patterns from training data and

generate classifiers that then are used to detect attacks on

computer systems. In general, the input data to classifiers is in a

high dimension feature space, but not all of features are relevant

to the classes to be classified. In this paper, we use a genetic

algorithm to select a subset of input features for decision tree

classifiers, with a goal of increasing the detection rate and

decreasing the false alarm rate in network intrusion detection. We

used the KDDCUP 99 data set to train and test the decision tree

classifiers. The experiments show that the resulting decision trees

can have better performance than those built with all available

features.

Categories and Subject Descriptors
D.1.0 Software: Programming Techniques, General

General Terms
Algorithms, Performance, Security

Keywords
Genetic Algorithm, Decision Trees, Intrusion Detection

1. INTRODUCTION
Intrusion Detection Systems (IDSs) have become a major focus of

computer scientists and practitioners as computer attacks have

become an increasing threat to commercial business as well as

our daily lives. The computer security community has developed

a variety of intrusion detection systems to prevent attacks on

computer systems. There are two main categories of intrusion

detection systems: anomaly detection and misuse detection.

Anomaly detection systems seek to identify deviations from

normal behavior models which are built from large training data

sets. Misuse detection systems compare the system use behavior

with signatures extracted from known attacks; a match with a

high confidence is considered an attack. These two kinds of

systems have their own strengths and weaknesses. The former can

detect novel attacks but, in general for most such existing

systems, have a high false alarm rate because it is difficult to

generate practical normal behavior profiles for protected systems.

The latter can detect known attacks with a very high accuracy via

pattern matching on known signatures, but cannot detect novel

attacks because their signatures are not yet available for pattern

matching. In this paper, we only consider misuse detection

systems.

Machine Learning techniques have recently been extensively

applied to intrusion detection. Example approaches include

decision trees [1][14][15][17][21][27], Genetic Algorithm and

Genetic Programming [5][6][16][19][24], naive Bayes [1][26],

kNN [18] and neural networks [4][8]. A key problem is how to

choose the features (attributes) of the input training data on which

learning will take place. Since not every feature of the training

data may be relevant to the detection task and, in the worse case,

irrelevant features may introduce noise and redundancy into the

design of classifiers, choosing a good subset of features will be

critical to improve the performance of classifiers [20].

Punch et al. [22], Pei et al. [20] and Huang et al. [10] address the

problem of feature selection and extraction by using genetic

algorithm to find an optimal (or nearly optimal) weighting of

features for k-Nearest Neighbor classifiers. Huang et al. [10]

apply a GA to find an optimal subset of features for a Bayes

classifier and a linear regression classifier. Gartner et al. [7] use

support vector machines to find optimal feature weights for a

Bayes classifier. To the best of our knowledge, combining a

genetic algorithm with decision tree classifiers has not been tried

for intrusion detection. In this paper, we use a genetic algorithm

to find an optimal subset of features for decision tree classifiers

based on the KDDCUP 99 data set with respect to the

characteristics of four categories of attack: Probe, DOS, U2R and

R2L.

2. RELATED WORK
In 1999, the KDD conference hosted a classifier learning contest

[11], in which the learning task was to build a predictive model to

differentiate attacks and normal connections. Contestants trained

and tested their classifiers on an intrusion dataset provided by

MIT Lincoln Labs. Each record of this dataset has 41 features

consisting of three categories: (1) Basic features of individual

TCP connections; (2) Content features within a connection; (3)

Traffic features computed using a two-second time window. The

results of the contest were based on the performance of the

classifier over a testing data set of 311029 cases. Surprisingly, the

top three classifiers were all decision tree classifiers [21][15][27].

These results show the capability of learning and classification of

decision trees. Amor et al [1] retried the above task with naïve

Bayes and decision tree classifiers. They conclude that the naïve

Bayes classifier is competitive and required less training time than

the decision tree classifier, although the latter had slightly better

performance. All these work above use all 41 features of the

KDDCUP99 training data and testing data. We argue that not all

of these features are important for classifying the four categories

of attack: Probe, DOS, U2R and R2L. We attempt to find an

optimal subset of features for classifying each category.

Sung et al. [25] use Support Vector Machines (SVMs) and Neural

Networks to identify important features for 1998 DARPA

Intrusion Detection data. They delete one feature at a time and

build SVMs and Neural Networks using the remaining 40

features. The importance of this deleted feature depends on

training time, testing time and the accuracy for SVMs or overall

accuracy, false positive rate and false negative rate for Neural

Networks. The same evaluation process is done for each feature.

Features are ranked according to their importance. They conclude

that SVMs and neural network classifiers using only important

features can achieve better or comparable performance than

classifiers that use all features.

The most related work to ours is done by Huang, Pei and

Goodman [10], where the general problem of GA optimized

feature selection and extraction is addressed. In their paper,

Huang, et al. apply a GA to optimize the feature weights of a kNN

classifier and choose optimal subset of features for a Bayesian

classifier and a linear regression classifier. The optimization

framework of their work is based on the wrapper model [12][13].

The wrapper model consists of a search component and an

evaluation component. The search component generates a

parameter settings and feeds them to the evaluation component.

The evaluation component then evaluates these parameter settings

by induction algorithms over training and evaluation datasets. The

results of the evaluation feed back to the search component that in

turn generates new parameter settings. This iterative search

process continues until the preset classification performance is

achieved or the maximum number of loops has been reached.

Experiments in [10] show that the performance of all these three

classifiers with feature weighing or selection by a GA is better

than that of the same classifiers without a GA. They conclude that

performance gain is completely dependent on what kind of

classifier is used over what type of data set.

3. INTRODUCTION TO DECISION TREES

AND GENETIC ALGORITHM

3.1. Decision Trees
The decision tree classifier by Quinlan [23] is one of most well-

known machine learning techniques. A decision tree is made of

decision nodes and leaf nodes. Each decision node corresponds to

a test X over a single attribute of the input data and has a number

of branches, each of which handles an outcome of the test X.

Each leaf node represents a class that is the result of decision for

a case.

The process of constructing a decision tree is basically a divide-

and-conquer process [23]. A set T of training data consists of k

classes (C1 , C2 ,…, Ck). If T only consists of cases of one single

class, T will be a leaf. If T contains no case, T is a leaf and the

associated class with this leaf will be assigned with the major

class of its parent node (this is the choice of C4.5). If T contains

cases of mixed classes (i.e. more than one class), a test based on

some attribute a i of the training data will be carried and T will

be split into n subsets (T 1 , T 2 , …, T n), where n is the number of

outcomes of the test over attribute a i . The same process of

constructing decision tree is recursively performed over each T j ,

where 1 j n , until every subset belongs to a single class.

The problem here is how to choose the best attribute for each

decision node during construction of the decision tree. The

criterion that C4.5 chooses is Gain Ratio Criterion. The basic idea

of this criterion is to, at each splitting step, choose an attribute

which provides the maximum information gain while reducing

the bias in favor of tests with many outcomes by normalization.

Once a decision tree is built, it can be used to classify testing data

that has the same features as the training data. Starting from the

root node of decision tree, the test is carried out on the same

attribute of the testing case as the root node represents. The

decision process takes the branch whose condition is satisfied by

the value of tested attribute. This branch leads the decision

process to a child of the root node. The same process is

recursively executed until a leaf node is reached. The leaf node is

associated with a class that is assigned to the test case.

3.2 Genetic Algorithm
Genetic Algorithms (GAs) [9] have been successfully applied to

solve search and optimization problems. The basic idea of a GA

is to search a hypothesis space to find the best hypothesis. A pool

of initial hypotheses called a population is randomly generated

and each hypothesis is evaluated with a fitness function.

Hypotheses with greater fitness have higher probability of being

chosen to create the next generation. Some fraction of the best

hypotheses may be retrained into the next generation, the rest

undergo genetic operations such as crossover and mutation to

generate new hypotheses. The size of a population is the same for

all generations in our implementation. This process is iterated

until either a predefined fitness criterion is met or the preset

maximum number of generations is reached.

A GA generally has four components. A population of

individuals where each individual in the population represents a

possible solution. A fitness function which is an evaluation

function by which we can tell if an individual is a good solution

or not. A selection function which decides how to pick good

individuals from the current population for creating the next

generation. Genetic operators such as crossover and mutation

which explore new regions of search space while keeping some of

the current information at the same time.

The following is a typical GA procedure:

Procedure GA

Begin

Initialize population;

Evaluate population members;

While termination condition not satisfied do

 Begin

Select parents from current population;

Apply genetic operators to selected parents;

Evaluate offspring;

Set offspring equal to current population;

End

End

4. GA-BASED FEATURE SELECTION FOR

DECISION TREES
Our proposed GA-based Feature Selection algorithm is based on

the wrapper model [12][13] as discussed in section 2. In our

adapted algorithm, the search component is a GA and the

evaluation component is a decision tree. A detailed description of

this algorithm is shown in Figure 1. The initial population is

randomly generated. Every individual of the population has 41

genes, each of which represents a feature of the input data and

can be assigned to 1 or 0. 1 means the represented feature is used

during constructing decision trees; 0 means it is not used. As a

result, each individual in the population represents a choice of

available features. For each individual in the current population, a

decision tree is built using the C4.5 program [23]. This resulting

decision tree is then tested over nine validation data sets, which

generate nine classification error rates. The fitness of this

individual is the aggregate total of these classification error rates.

The lower the classification error rate, the better the fitness of the

individual.

Once the fitness values of all individuals of the current population

have been computed, the GA begins to generate next generation

as follows:

(1) Choose individuals according to Rank Selection method [2].

(2) Use two point crossover to exchange genes between parents to

create offspring.

(3) Perform a bit level mutation to each offspring.

(4) Keep two elite parents and replace all other individuals of

current population with offspring.

Figure 1: GA/Decision Tree Hybrid

The procedure above is iteratively executed until the maximum

number of generations (100) is reached. Finally, the best

individual of the last generation is chosen to build the final

decision tree classifier, which is tested on the test data set.

5. EXPERIMENTS AND ANALYSIS
The main purpose of this work is to see whether the GA/Decision

Tree hybrid could produce a better classification of attacks than

the current best performer of Decision Tree alone. We use the

10% of the KDDCUP99 training data (489843 cases) and full

testing data (311029 cases) for our experiments. We split the

training data and testing data into four smaller training data sets

and testing data sets according to four attack categories (Probe,

DOS, R2L and U2R). For example, the training data set and test

data set for DOS include all DOS attacks and all normal cases in

the original training and test data. For each attack category, we

split its training data into ten separate files of equal size. One is

selected as the training data set and the rest as validation sets. We

run the experiments for all four attack categories and build a

decision tree for each category.

Each GA run is initialized with a randomly generated seed. Each

gene on an individual determines whether or not a feature of the

data is used in the creation of the decision tree. The fitness is the

sum of the validation error rates. The test data, which is

completely separate from the training and validation data, is used

for the testing of the final decision tree. As part of the standard

GA process, those individuals with the best fitness produce

offspring and the process continues for 100 generations. In order

to save computational time, we use parallel computing for our

experiment. We run this experiment 20 times for each attack

category.

The results of experiments for all four categories are compiled in

Table 1. The “Decision Tree” column represents detection error

rate of decision trees using all features on testing data set. The

“Hybrid (Avg)” column represents the average of detection error

rates of decision trees using features selected by top individuals

of 20 runs. The “Hybrid (Best)” column represents the best of top

individuals of 20 runs that generates the least testing error rate for

each category. As seen in Table 1, the average Hybrid results are

typically better than those of Decision Trees. The Hybrid

algorithm is able to optimize the parameters to, on average,

produce better results. Upon looking at the Hybrid (best) column,

however, the GA did not always converge to the same place in

every instance. The GA made drastic improvements in some of

the categories. For example, performance gain on Probe is 23%

on the average and 60% for the best. Performance improvement

on R2L and U2R are limited, however, this may be because the

proportions of R2L and U2R attacks are very low in the training

data, but much higher in the testing data, which include some new

R2L and U2R attacks.

In order to see how genes evolve over generations, we present

detail experimental results for DOS. In Figure 2, we show the

change of the detection error rate over 100 generations on the

validation data sets (left side) and the testing data set (right side).

The value of the error rate of each generation in Figure 2 is the

average of error rates of the top individuals of all 20 runs. It can

be seen that the hybrid always produces better results than the

Figure 2: Sum of Percent Error Rates for Validation Data Sets (left) and

Average Percent Error for Testing Data Set (right) for each Generation Averaged over 20 Runs
(Bold Line: Decision Tree, Fine Dashed Line: Hybrid, and Ultra Dashed Line: 95% confidence interval)

0 357 11 16 21 26 31 36 41 46 515559 64 69 74 79 84 89 94 99

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Percent Error Over Generations
On Validation Data Sets

Hybrid
95% Up
95% Down
Decision Tree

024681115192327313539434751555963677175798387919599

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

Percent Error Over Generations
 On Testing Data Set

Hybrid
95% Up
95% Down
Decision Tree

Table 1: Error Rate for Top Individual at the Last

Generation of 20 Runs
Categories Decision Tree (%) Hybrid (Avg %) Hybrid (Best %)

DOS 2.321258 2.222582 2.197655

Probe 2.166494 1.670193 0.869377

R2L 19.979205 19.945019 19.628280

U2R 0.095610 0.100885 0.089016

decision tree alone on the validation data set (left side). A 95%

confidence interval is constructed around the average value of the

20 runs (2 standard deviations) and that is also well below the

value generated by decision trees (Bold Line). A similar trend is

seen in the graph for the testing data set (right side). The average

value generated by the hybrid is able to improve beyond the value

by decision trees toward the end of the run, when the variance

decreases and the GA algorithm converges. The reason for the

major increase in performance for the validation set versus the

testing set can be attributed to the fact that the validation values

are in the feedback loop of the wrapper model. The hybrid is able

to create better decision trees with the training set because the

error rate of the validation sets was the fitness function. This

creates a bias toward the validation data. In addition, the testing

set error was much higher than validation set error because the

KDDCUP99 test dataset introduces never before seen attacks

which are difficult to detect in the context of misuse detection

systems.

For further analysis of how the GA is producing better results, the

frequency of gene usage of the top individuals is examined for

the DOS category. The meaning and the full name of each feature

is given in [11]. The genes of the best individual in each

generation are tracked for the 20 runs. The purpose is to discover

those genes of importance that have a frequency that is either

above or below some threshold away from the value of 0.50. A

0.50 frequency value means that, probabilistically, it does not

matter whether that feature is on or off. As seen in Table 2, the 0th

generation contains the most uniform distribution of gene

frequency. However, it still can be seen that the top selected

individual already contains some of the basic traits of important

genes (protocol_type, src_bytes). As the generations progress, the

important and unimportant genes begin to travel to their

respective extremes. A low frequency indicates that a particular

gene is not important while a high frequency indicates that a gene

is important. For example, some genes (service, hot, d_h_count,

same_srv_rate) are weeded out over time and progress toward

zero while others (dst_bytes, wrong_fragment, diff_srv_rate) are

strengthened and increase towards one. Using some unimportant

features might lead the decision tree to take the “easy way” to

partition data that maximized the information gain; however, it

did not create an intelligent partitioning decision. The GA portion

of the algorithm was able to eliminate the unimportant features

and identify those features that are necessary for effective

classification.

6. CONCLUSION
The genetic algorithm and decision tree hybrid was able to

outperform the decision tree algorithm without feature selection.

We believe that this improvement is due to the fact that the

hybrid approach is able to focus on relevant features and

eliminate unnecessary or distracting features. This initial filtering

is able to improve the classification abilities of the decision tree.

The algorithm does take longer to execute than the standard

decision tree; however, its non-deterministic process is able to

make better decision trees. The training process needs only to be

done once. The classification process takes the same amount of

time for the hybrid and non-hybrid systems.

7. FUTURE WORK
The hybrid GA /decision tree algorithm needs to be tested more

in depth for its true potential. A forest of decision trees will be

constructed from the combination of four final decision trees,

each for one major attack category. The final decision will be

made through a voting algorithm. We will then compare the

overall classification ability of the hybrid algorithm with other

machine learning algorithms in the literature.

8. REFERENCES
[1] Amor, N. B., Benferhat, S., and Elouedi, Z. Naive Bayes vs

decision trees in intrusion detection systems. In Proc. 2004

ACM Symp. on Applied Computing. pp. 420-424, 2004.

[2] Baker, J.E. Adaptive selection methods for genetic

Table 2: Gene Frequency of Top Individual for Selected

Generations over 20 Runs for the DOS Category
Attribute Gen 0 Gen 25 Gen 50 Gen 75 Gen 100

duration 0.55 0.45 0.45 0.40 0.50
protocol_type 1.00 1.00 1.00 1.00 1.00
service 0.25 0.10 0.05 0.00 0.00
flag 0.55 0.65 0.50 0.50 0.45

1.00 1.00 1.00 1.00 1.00
0.60 0.80 0.80 0.80 0.90

land 0.35 0.40 0.45 0.45 0.40
wrong_fragment 0.70 0.95 0.95 1.00 1.00
urgent 0.30 0.45 0.40 0.50 0.40
hot 0.45 0.30 0.25 0.15 0.20

0.55 0.30 0.40 0.40 0.45
logged_in 0.50 0.35 0.25 0.20 0.25

0.45 0.40 0.35 0.25 0.20
root_shell 0.45 0.35 0.50 0.50 0.60

0.25 0.45 0.50 0.35 0.30
0.40 0.45 0.40 0.40 0.25
0.45 0.40 0.60 0.55 0.50
0.40 0.45 0.45 0.35 0.40
0.45 0.45 0.50 0.40 0.45
0.50 0.55 0.65 0.60 0.70

is_host_login 0.50 0.60 0.55 0.55 0.65
is_guest_login 0.60 0.35 0.40 0.40 0.35
count 0.30 0.00 0.00 0.00 0.00

0.15 0.10 0.10 0.10 0.00
0.70 0.80 0.85 0.80 0.80
0.40 0.45 0.50 0.55 0.50
0.65 0.70 0.60 0.50 0.40
0.55 0.45 0.50 0.50 0.45
0.50 0.45 0.35 0.30 0.35
0.55 0.75 0.75 0.85 0.90
0.20 0.50 0.40 0.45 0.55

d_h_count 0.65 0.15 0.10 0.10 0.05

src_bytes

dst_bytes

num_failed_logins

num_compromised

su_attempted

num_root

num_file_creations

num_shells

num_access_files

num_outbound_cmds

srv_count

serror_rate

srv_serror_rate

rerror_rate

srv_rerror_rate

same_srv_rate

diff_srv_rate

s_diff_h_rate

algorithms. In Proc. 1st Int’l Conf. On Genetic Algorithms.

Pg 101-111, 1985.

[3] Balthrop, J., Esponda, F., Forrest, S., and Glickman, M.

Coverage and generalization in an artificial immune system.

In Proc. Genetic and Evolutionary Computation Conference.

(GECCO), pp. 3-10, 2002.

[4] Botha, M., Solms, R. V., Perry, K., Loubser, E., and

Yamoyany, G. The utilization of artificial intelligence in a

hybrid intrusion detection system. In Proceedings of
SAICSIT 2002, pp. 149–155, 2002.

[5] Crosbie, M., and Spafford, G. Applying genetic programming

to intrusion detection. In Proc.1995 AAAI Symposium on

Genetic Programming, pp. 1-8.

[6] Dasgupta, D., and Gonzalez, F. A. An intelligent decision

support system for intrusion detection and response. In Proc.

Int’l Workshop on Mathematical Methods, Models and Arch.

For Computer Networks Security, pp. 1-14, 2001.

[7] Gartner, T., and Flach, P. A. WBCsvm: Weighted Bayesian

Classification based on support vector machine. In Proc. 18th

International Conference on Machine Learning (ICML-

2001), pp. 156-161.

[8] Ghosh, A., and Schwartzbard, A. A study in using neural

networks for anomaly and misuse Detection. 8th USENIX

Security Symposium, pp. 141-151, 1999.

[9] Holland, J. H. (1975). Adaptation in natural and artificial

systems. University of Michigan Press (reprinted in 1992 by

MIT Press, Cambridge, MA).

[10] Huang, Z., Pei, M., Goodman, E., Huang, Y., and Li, G.

Genetic algorithm optimized feature transformation: a

comparison with different classifiers. In Proc. GECCO 2003,

pp. 2121-2133.

[11] KDDCUP 1999

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[12] Kohavi, R., and John, G. Automatic parameter selection by

minimizing estimated error. In Proc. Machine Learning

(ICML-95), 1995.

[13] Kohavi, R., and John, G. The wrapper approach. In Motoda,

H., and Liu, H. (eds.), Feature Extraction, Construction and

Selection: A Data Mining Perspective. Kluwer Academic

Publishers, July 1998.

[14] Kruegel, C., and Toth, T. Using decision trees to improve

signature-based intrusion detection. In Proc. Int’l Symp.

Recent Advances in Intrusion Detection, 2003.

[15] Levin, I. KDD-99 classifier learning contest LLSoft's results

overview. SIGKDD Explorations, 2000 ACM SIGKDD. 1

(2), pp. 67-75. January 2000.

[16] Li, W. Using Genetic Algorithm for network intrusion

detection. In Proc. United States Department of Energy

Cyber Security Group 2004 Training Conference, Kansas

City, Kansas, May 24-27, 2004.

[17] Li, X., and Ye, N. Decision tree classifier for computer

intrusion detection. Journal of Parallel and Distributed

Computing Practices, 4(2), pp. 179-190, 2001.

[18] Liao, Y., and Vemuri, V. R. Using text categorization

techniques for intrusion detection. In Proc. of 11th USENIX

Security Symposium, San Francisco, California, USA,

August 5-9, 2002.

[19] Lu, W., and Traore, I. Detecting new forms of network

intrusion using genetic programming. Computational

Intelligence, 20(3), 2004, pp. 475–494.

[20] Pei, M., Goodman, E. D., and Punch, W. F. Feature

extraction using genetic algorithms. In Proc. Int’l Symp. on

Intelligent Data Engineering and Learning'98. pp. 371-384.

[21] Pfahringer, B. Winning the KDD99 Classification Cup:

Bagged boosting. SIGKDD Explorations, 2000 ACM

SIGKDD. 1(2), pp. 65-66, January 2000.

[22] Punch, W.F., Goodman, E.D., Pei, M., Chia-Shun, L.,

Hovland, P., and Enbody, R. Further research on feature

selection and classification using genetic algorithms. In

Proc. 5th Int’l Conf. Genetic Algorithms. pp. 557, July

1993.

[23] Quinlan, J. R. (1993). C4.5, Programs for Machine

Learning. Morgan Kaufmann San Mateo Ca, 1993.

[24] Sinclair, C., Pierce, L., and Matzner, S. An application of

machine learning to network intrusion detection. In Proc.

1999 Ann. Comp. Security Application Conf., pp 371-377.

[25] Sung, A. H., and Mukkamala, S. Identifying important

features for intrusion detection using support vector

machines and neural networks. In Proceedings of the 2003

Symposium on Applications and the Internet. pp. 209- 216.

[26] Valdes, A., Skinner K. Adaptive model-based monitoring for

cyber attack detection. In Proc. of Recent Advances in

Intrusion Detection. pp. 80-92, 2000.

[27] Vladimir, M., Alexei, V., and Ivan, S. The MP13 approach

to the KDD'99 classifier learning contest. SIGKDD

Explorations, 2000 ACM SIGKDD. 1(2), pp. 76-77. January

2000.

