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ABSTRACT
Machine  Learning  techniques  such  as  Genetic  Algorithms  and

Decision  Trees  have  been  applied  to  the  field  of  intrusion

detection for more than a decade. Machine Learning techniques

can learn normal and anomalous patterns from training data and

generate  classifiers  that  then  are  used  to  detect  attacks  on

computer systems. In general, the input data to classifiers is in a

high dimension feature space, but not all of features are relevant

to  the classes  to  be classified.  In  this  paper,  we use a  genetic

algorithm to  select  a subset  of  input  features  for  decision  tree

classifiers,  with  a  goal  of  increasing  the  detection  rate  and

decreasing the false alarm rate in network intrusion detection. We

used the KDDCUP 99 data set to train and test the decision tree

classifiers. The experiments show that the resulting decision trees

can have better  performance than those built  with  all  available

features.

Categories and Subject Descriptors
D.1.0 Software: Programming Techniques, General

General Terms
Algorithms, Performance, Security
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1. INTRODUCTION
Intrusion Detection Systems (IDSs) have become a major focus of

computer  scientists  and  practitioners  as  computer  attacks  have

become an increasing threat  to  commercial  business as well  as

our daily lives. The computer security community has developed

a  variety  of  intrusion  detection  systems  to  prevent  attacks  on

computer  systems.  There  are  two main  categories  of  intrusion

detection  systems:  anomaly  detection  and  misuse  detection.

Anomaly  detection  systems  seek  to  identify  deviations  from

normal behavior models which are built from large training data

sets. Misuse detection systems compare the system use behavior

with  signatures  extracted  from known  attacks;  a  match  with  a

high  confidence  is  considered  an  attack.  These  two  kinds  of

systems have their own strengths and weaknesses. The former can

detect  novel  attacks  but,  in  general  for  most  such  existing

systems,  have  a  high  false  alarm rate  because it  is  difficult  to

generate practical normal behavior profiles for protected systems.

The latter can detect known attacks with a very high accuracy via

pattern matching on known signatures,  but  cannot  detect novel

attacks because their signatures are not yet available for pattern

matching.  In  this  paper,  we  only  consider  misuse  detection

systems.

Machine  Learning  techniques  have  recently  been  extensively

applied  to  intrusion  detection.  Example  approaches  include

decision  trees  [1][14][15][17][21][27],  Genetic  Algorithm  and

Genetic  Programming  [5][6][16][19][24],  naive  Bayes  [1][26],

kNN [18] and neural networks [4][8]. A key problem is how to

choose the features (attributes) of the input training data on which

learning will take place. Since not every feature of the training

data may be relevant to the detection task and, in the worse case,

irrelevant features may introduce noise and redundancy into the

design of classifiers, choosing a good subset of features will be

critical to improve the performance of classifiers [20].

Punch et al. [22], Pei et al. [20] and Huang et al. [10] address the

problem  of  feature  selection  and  extraction  by  using  genetic

algorithm  to  find  an  optimal  (or  nearly  optimal)  weighting  of

features  for  k-Nearest  Neighbor  classifiers.  Huang  et  al.  [10]

apply  a GA to  find  an optimal  subset  of  features  for  a Bayes



classifier and a linear regression classifier. Gartner et al. [7] use

support  vector  machines  to  find  optimal  feature  weights  for  a

Bayes  classifier.  To  the  best  of  our  knowledge,  combining  a

genetic algorithm with decision tree classifiers has not been tried

for intrusion detection. In this paper, we use a genetic algorithm

to find an optimal subset of features for decision tree classifiers

based  on  the  KDDCUP  99  data  set  with  respect  to  the

characteristics of four categories of attack: Probe, DOS, U2R and

R2L.

2. RELATED WORK
In 1999, the KDD conference hosted a classifier learning contest

[11], in which the learning task was to build a predictive model to

differentiate attacks and normal connections. Contestants trained

and  tested their  classifiers  on  an intrusion  dataset  provided  by

MIT Lincoln  Labs.  Each  record  of  this  dataset  has 41 features

consisting  of  three  categories:  (1)  Basic  features  of  individual

TCP connections;  (2)  Content  features  within a connection;  (3)

Traffic features computed using a two-second time window. The

results  of  the  contest  were  based  on  the  performance  of  the

classifier over a testing data set of 311029 cases. Surprisingly, the

top three classifiers were all decision tree classifiers [21][15][27].

These results show the capability of learning and classification of

decision trees. Amor et al [1] retried the above task with naïve

Bayes and decision tree classifiers. They conclude that the naïve

Bayes classifier is competitive and required less training time than

the decision tree classifier, although the latter had slightly better

performance.  All  these  work  above  use  all  41  features  of  the

KDDCUP99 training data and testing data. We argue that not all

of these features are important for classifying the four categories

of  attack:  Probe,  DOS,  U2R and  R2L.  We attempt  to  find  an

optimal subset of features for classifying each category.

Sung et al. [25] use Support Vector Machines (SVMs) and Neural

Networks  to  identify  important  features  for  1998  DARPA

Intrusion  Detection data. They delete one feature  at  a time and

build  SVMs  and  Neural  Networks  using  the  remaining  40

features.  The  importance  of  this  deleted  feature  depends  on

training time, testing time and the accuracy for SVMs or overall

accuracy,  false  positive  rate  and  false  negative  rate  for  Neural

Networks. The same evaluation process is done for each feature.

Features are ranked according to their importance. They conclude

that  SVMs and neural  network classifiers  using  only important

features  can  achieve  better  or  comparable  performance  than

classifiers that use all features.
 

The  most  related  work  to  ours  is  done  by  Huang,  Pei  and

Goodman  [10],  where  the  general  problem  of  GA  optimized

feature  selection  and  extraction  is  addressed.  In  their  paper,

Huang, et al. apply a GA to optimize the feature weights of a kNN

classifier  and  choose optimal  subset  of  features  for  a Bayesian

classifier  and  a  linear  regression  classifier.  The  optimization

framework of their work is based on the wrapper model [12][13].

The  wrapper  model  consists  of  a  search  component  and  an

evaluation  component.  The  search  component  generates  a

parameter settings and feeds them to the evaluation component.

The evaluation component then evaluates these parameter settings

by induction algorithms over training and evaluation datasets. The

results of the evaluation feed back to the search component that in

turn  generates  new  parameter  settings.  This  iterative  search

process  continues  until  the  preset  classification  performance  is

achieved  or  the  maximum number  of  loops  has  been  reached.

Experiments in [10] show that the performance of all these three

classifiers with feature weighing or  selection by a GA is better

than that of the same classifiers without a GA. They conclude that

performance  gain  is  completely  dependent  on  what  kind  of

classifier is used over what type of data set.

3. INTRODUCTION TO DECISION TREES

AND GENETIC ALGORITHM

3.1. Decision Trees
The decision tree classifier by Quinlan [23] is one of most well-

known machine learning techniques. A decision tree is made of

decision nodes and leaf nodes. Each decision node corresponds to

a test X over a single attribute of the input data and has a number

of  branches,  each of  which handles  an outcome of  the test  X.

Each leaf node represents a class that is the result of decision for

a case.

The process of constructing a decision tree is basically a divide-

and-conquer process [23]. A set T of training data consists of k

classes ( C1 , C2 ,…, Ck ). If T only consists of cases of one single

class, T will be a leaf. If T contains no case, T is a leaf and the

associated class  with  this  leaf  will  be  assigned  with  the major

class of its parent node (this is the choice of C4.5). If T contains

cases of mixed classes (i.e. more than one class), a test based on

some attribute  a i  of the training data will be carried  and T will

be split into n subsets ( T 1 , T 2 , …, T n ), where n is the number of

outcomes  of  the  test  over  attribute  a i .  The  same  process  of

constructing decision tree is recursively performed over each T j ,

where 1 j n , until every subset belongs to a single class.

The problem here  is how to choose the best attribute  for  each

decision  node  during  construction  of  the  decision  tree.  The

criterion that C4.5 chooses is Gain Ratio Criterion. The basic idea

of this criterion is to, at each splitting step, choose an attribute

which  provides  the  maximum information  gain  while  reducing

the bias in favor of tests with many outcomes by normalization.

Once a decision tree is built, it can be used to classify testing data

that has the same features as the training data. Starting from the

root  node  of  decision  tree,  the  test  is  carried  out  on  the same



attribute  of  the  testing  case  as  the  root  node  represents.  The

decision process takes the branch whose condition is satisfied by

the  value  of  tested  attribute.  This  branch  leads  the  decision

process  to  a  child  of  the  root  node.  The  same  process  is

recursively executed until a leaf node is reached. The leaf node is

associated with a class that is assigned to the test case.

3.2 Genetic Algorithm
Genetic Algorithms (GAs) [9] have been successfully applied to

solve search and optimization problems. The basic idea of a GA

is to search a hypothesis space to find the best hypothesis. A pool

of initial  hypotheses called a population is randomly generated

and  each  hypothesis  is  evaluated  with  a  fitness  function.

Hypotheses with greater fitness have higher probability of being

chosen to create the next generation.  Some fraction of the best

hypotheses  may be retrained  into  the  next  generation,  the  rest

undergo  genetic  operations  such  as  crossover  and  mutation  to

generate new hypotheses. The size of a population is the same for

all  generations  in  our  implementation.  This  process  is  iterated

until  either  a  predefined  fitness  criterion  is  met  or  the  preset

maximum number of generations is reached.

A  GA  generally  has  four  components.  A  population  of

individuals where each individual in the population represents a

possible  solution.  A  fitness  function  which is  an  evaluation

function by which we can tell if an individual is a good solution

or  not.  A selection  function  which  decides  how  to  pick  good

individuals  from  the  current  population  for  creating  the  next

generation.  Genetic  operators  such  as  crossover  and  mutation

which explore new regions of search space while keeping some of

the current information at the same time. 

The following is a typical GA procedure:

Procedure GA

Begin

Initialize population;

Evaluate population members;

While termination condition not satisfied do

        Begin

Select parents from current population;

Apply genetic operators to selected parents;

Evaluate offspring;

Set offspring equal to current population;

End

End

4. GA-BASED FEATURE SELECTION FOR

DECISION TREES
Our proposed GA-based Feature Selection algorithm is based on

the  wrapper  model  [12][13]  as  discussed  in  section  2.  In  our

adapted  algorithm,  the  search  component  is  a  GA  and  the

evaluation component is a decision tree. A detailed description of

this  algorithm is shown in Figure  1.   The initial  population  is

randomly generated.  Every individual  of the population has 41

genes, each of which represents a feature of the input data and

can be assigned to 1 or 0. 1 means the represented feature is used

during constructing decision trees; 0 means it is not used. As a

result,  each individual  in  the population  represents  a choice of

available features. For each individual in the current population, a

decision tree is built using the C4.5 program [23]. This resulting

decision tree is then tested over nine validation data sets, which

generate  nine  classification  error  rates.  The  fitness  of  this

individual is the aggregate total of these classification error rates.

The lower the classification error rate, the better the fitness of the

individual.

Once the fitness values of all individuals of the current population

have been computed, the GA begins to generate next generation

as follows:

(1) Choose individuals according to Rank Selection method [2].

(2) Use two point crossover to exchange genes between parents to

create offspring.

(3) Perform a bit level mutation to each offspring. 

(4)  Keep two elite  parents  and  replace all  other  individuals  of

current population with offspring.

Figure 1: GA/Decision Tree Hybrid



The procedure above is iteratively executed until  the maximum

number  of  generations  (100)  is  reached.  Finally,  the  best

individual  of  the  last  generation  is  chosen  to  build  the  final

decision tree classifier, which is tested on the test data set. 

5. EXPERIMENTS AND ANALYSIS
The main purpose of this work is to see whether the GA/Decision

Tree hybrid could produce a better classification of attacks than

the current best performer of Decision Tree alone.  We use the

10% of  the  KDDCUP99 training  data  (489843  cases)  and  full

testing  data  (311029  cases)  for  our  experiments.  We split  the

training data and testing data into four smaller training data sets

and testing data sets according to four attack categories (Probe,

DOS, R2L and U2R). For example, the training data set and test

data set for DOS include all DOS attacks and all normal cases in

the original training and test data. For each attack category, we

split its training data into ten  separate files of equal size. One is

selected as the training data set and the rest as validation sets. We

run  the  experiments  for  all  four  attack  categories  and  build  a

decision tree for each category. 

Each GA run is initialized with a randomly generated seed. Each

gene on an individual determines whether or not a feature of the

data is used in the creation of the decision tree. The fitness is the

sum  of  the  validation  error  rates.  The  test  data,  which  is

completely separate from the training and validation data, is used

for the testing of the  final decision tree. As part of the standard

GA  process,  those  individuals  with  the  best  fitness  produce

offspring and the process continues for 100 generations. In order

to  save computational  time,  we use parallel  computing  for  our

experiment.  We  run  this  experiment  20  times  for  each  attack

category.

The results of experiments for all four categories are compiled in

Table 1. The “Decision Tree” column represents detection error

rate of decision trees using all features on testing data set. The

“Hybrid (Avg)” column represents the average of detection error

rates of decision trees using features selected by top individuals 

of 20 runs. The “Hybrid (Best)” column represents the best of top

individuals of 20 runs that generates the least testing error rate for

each category. As seen in Table 1, the average Hybrid results are

typically  better  than  those  of  Decision  Trees.  The  Hybrid

algorithm  is  able  to  optimize  the  parameters  to,  on  average,

produce better results. Upon looking at the Hybrid (best) column,

however,  the GA did not always converge to the same place in

every instance. The GA made drastic improvements in some of

the categories. For example, performance gain on Probe is 23%

on the average and 60% for the best. Performance improvement

on R2L and U2R are limited, however, this may be because the

proportions of R2L and U2R attacks are very low in the training

data, but much higher in the testing data, which include some new

R2L and U2R attacks.  

In order  to see how genes evolve over  generations,  we present

detail  experimental  results  for  DOS. In Figure  2,  we show the

change of the detection error  rate over  100  generations  on the

validation data sets (left side) and the testing data set (right side).

The value of the error rate of each generation in Figure 2 is the

average of  error rates of the top individuals of all 20 runs. It can

be seen that the hybrid always produces better  results  than the

Figure 2: Sum of Percent Error Rates for Validation Data Sets (left) and

Average Percent Error for Testing Data Set (right) for each Generation Averaged over 20 Runs
(Bold Line: Decision Tree,  Fine Dashed Line: Hybrid,  and Ultra Dashed Line: 95% confidence interval)
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Table 1: Error Rate for Top Individual at the Last

Generation of 20 Runs
Categories Decision Tree (%) Hybrid (Avg %) Hybrid (Best %)

DOS 2.321258 2.222582 2.197655

Probe 2.166494 1.670193 0.869377

R2L 19.979205 19.945019 19.628280

U2R 0.095610 0.100885 0.089016



decision tree alone on the validation data set (left side). A 95%

confidence interval is constructed around the average value of the

20 runs (2 standard deviations)  and that is also well below the

value generated by decision trees (Bold Line). A similar trend is

seen in the graph for the testing data set (right side). The average

value generated by the hybrid is able to improve beyond the value

by decision trees toward the end of the run, when the variance

decreases and the GA algorithm converges.  The reason for  the

major  increase in  performance for  the validation  set versus the

testing set can be attributed to the fact that the validation values

are in the feedback loop of the wrapper model. The hybrid is able

to create better  decision trees with the training set because the

error  rate  of  the  validation  sets  was  the  fitness  function.  This

creates a bias toward the validation data. In addition, the testing

set error was much higher than validation set error because the

KDDCUP99  test  dataset  introduces  never  before  seen  attacks

which are difficult  to detect in the context  of misuse detection

systems.

For further analysis of how the GA is producing better results, the

frequency of gene usage of the top individuals is examined for

the DOS category. The meaning and the full name of each feature

is  given  in  [11].  The  genes  of  the  best  individual  in  each

generation are tracked for the 20 runs. The purpose is to discover

those  genes  of  importance  that  have a  frequency  that  is  either

above or below some threshold away from the value of 0.50. A

0.50  frequency  value  means  that,  probabilistically,  it  does  not

matter whether that feature is on or off. As seen in Table 2, the 0th

generation  contains  the  most  uniform  distribution  of  gene

frequency.  However,  it  still  can  be  seen  that  the  top  selected

individual already contains some of the basic traits of important

genes (protocol_type, src_bytes). As the generations progress, the

important  and  unimportant  genes  begin  to  travel  to  their

respective extremes. A low frequency indicates that a particular

gene is not important while a high frequency indicates that a gene

is important. For example, some genes (service, hot, d_h_count,

same_srv_rate)  are  weeded  out  over  time and  progress  toward

zero while others (dst_bytes, wrong_fragment, diff_srv_rate) are

strengthened and increase towards one. Using some unimportant

features might lead the decision tree to take the  “easy way” to

partition data that maximized the information gain; however,  it

did not create an intelligent partitioning decision. The GA portion

of the algorithm was able to eliminate the unimportant features

and  identify  those  features  that  are  necessary  for  effective

classification.

6. CONCLUSION
The  genetic  algorithm  and  decision  tree  hybrid  was  able  to

outperform the decision tree algorithm without feature selection.

We  believe  that  this  improvement  is  due  to  the  fact  that  the

hybrid  approach  is  able  to  focus  on  relevant  features  and

eliminate unnecessary or distracting features. This initial filtering

is able to improve the classification abilities of the decision tree.

The  algorithm  does  take  longer  to  execute  than  the  standard

decision  tree;  however,  its  non-deterministic  process  is  able  to

make better decision trees. The training process needs only to be

done once. The classification process takes the same amount of

time for the hybrid and non-hybrid systems.

7. FUTURE WORK
The hybrid GA /decision tree algorithm needs to be tested more

in depth for its true potential.  A forest of decision trees will be

constructed  from  the  combination  of  four  final  decision  trees,

each for  one major  attack category.  The final  decision  will  be

made  through  a  voting  algorithm.  We  will  then  compare  the

overall  classification  ability  of  the hybrid  algorithm with other

machine learning algorithms in the literature.
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