
Planning with Recursive Subgoals

Han Yu1, Dan C. Marinescu1, Annie S. Wu1, and Howard Jay Siegel2

1 School of Computer Science, University of Central Florida,
P. O. Box 162362, Orlando, FL 32816-2362

{hyu, dcm, aswu}@cs.ucf.edu
2 Department of Electrical and Computer Engineering

and Department of Computer Science,
Colorado State University, Fort Collins, Colorado, 80523-1373

hj@colostate.edu

Abstract. In this paper, we introduce an effective strategy for subgoal
division and ordering based upon recursive subgoals and combine this
strategy with a genetic-based planning approach. This strategy can be
applied to domains with conjunctive goals. The main idea is to recursively
decompose a goal into a set of serializable subgoals and to specify a strict
ordering among the subgoals. Empirical results show that the recursive
subgoal strategy reduces the size of the search space and improves the
quality of solutions to planning problems.

1 Introduction

Planning is an artificial intelligence (AI) problem with a wide range of real-world
applications. Given an initial state, a goal specification, and a set of operators,
the objective of planning is to construct a valid sequence of operators, or a plan,
to reach a state that satisfies the goal specifications starting from the initial
state of a system.

Much effort has been devoted to building computational models for a variety
of planning systems. Our work is based on STRIPS-like domains [7] in which
the change of system state is given by the operators and their preconditions
and postconditions. In addition, we are interested in the linear planning prob-
lem where solutions are represented by a total order of operators that must be
executed sequentially to reach the goal.

Definition 1. A planning problem is a four-tuple

Π = (P,O, I,G).

P is a finite set of ground atomic conditions (i.e., elementary conditions
instantiated by constants) used to define the system state. O = {oi}, where
1 ≤ i ≤ |O|, is a finite set of operators that can change the system state. Each
operator has three attributes: a set of preconditions opre

i , a set of postconditions
opost

i , and a cost C(oi). opost
i consists of two disjunctive subsets: opost+

i and opost−
i .

M.Gh. Negoita et al. (Eds.): KES 2004, LNAI 3214, pp. 17–27, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

18 H. Yu et al.

opost+
i , called the add list, is a set of conditions that must be true for a system

state after the execution of the operator; opost−
i , called the delete list, consists

of a set of all conditions that do not hold after the execution of the operator.
I ⊆ P is the initial state and G ⊆ P is the set of goal conditions. A plan ∆
contains a finite sequence of operators. An operator may occur more than once
in a plan. An operator is valid if and only if its preconditions are a subset of
the current system state. A plan ∆ solves an instance of Π if and only if every
operator in ∆ is valid and the result of applying these operators leads a system
from state I to a state that satisfies all the conditions in G.

Planning is generally more difficult than a typical search problem not only
because it involves an extremely large search space but also because the existence
of solutions is not guaranteed. In addition, the size of an optimal solution cannot
be easily estimated. As a result, it is difficult to quantify the time and space
complexity of planning algorithms.

This paper presents a planning strategy called recursive subgoals for problems
with conjunctive goals. The main idea of this strategy is to decompose the goals
recursively into a sequence of subgoals so that reaching one subgoal reduces a
planning problem to the same problem but at a smaller scale. We give a formal
definition of recursive subgoals and incorporate this strategy with a genetic-based
planning algorithm. The experiments on the Sliding-tile puzzle show that this
strategy is able to significantly improve the performance of planning algorithms
to problems in which recursive subgoals maintain the subgoal serializability.

2 Subgoal Ordering and Interaction

Korf presents a detailed study on the interaction of subgoals for a planning
problem with conjunctive goals [11]. He classifies three different types of inter-
actions between subgoals: independent subgoals, serializable subgoals, and non-
serializable subgoals. If a set of subgoals is independent, reaching any arbitrary
subgoals does not affect the difficulty of reaching the rest of the subgoals. Prob-
lems with independent subgoals are easy to solve because we can reach the
problem goal by approaching every subgoal individually. As a result, the cost of
the search is the total amount of cost devoted to every individual subgoal. This
type of interaction, however, rarely occurs in planning problems. In some plan-
ning problems, it is possible to specify an ordering of the subgoals that have the
following property: every subgoal can be reached without violating any subgoal
conditions that have been met previously during the search. Such subgoals are
called serializable subgoals. The search becomes easier if we are able to recognize
this type of subgoal correlation and specify a serializable ordering. On the other
hand, if such an ordering does not exist among the subgoals, the subgoals are
called non-serializable subgoals.

There is no universal method of dividing and ordering subgoals into serializ-
able subgoals. In addition, proving the serializability of a sequence of subgoals
is as difficult as proving the existence of solutions for a planning problem [11].
Therefore, Korf’s classification of subgoal interactions is not appropriate for pre-

Planning with Recursive Subgoals 19

dicting the difficulty of a planning problem. Barrett and Weld [2, 3] extend the
classification of serializable subgoals based on the probability of generating a
sequence of serializable subgoals from a randomly ordered set of subgoals. They
define trivially serializable subgoals for those subgoals that are always serializ-
able given any possible sequences. If a set of subgoals is not trivially serializable,
violation of previously met goal conditions might occur during the search for the
complete solution. As the cost of backtracking the previous subgoals is exponen-
tially high, a planning problem is tractable only if the probability of a random
sequence of subgoals being non-serializable is sufficiently low so that the cost for
backtracking does not dominate the average cost of the algorithm. Otherwise, a
planning problem is intractable. These subgoals are called laboriously serializable
subgoals.

A correct ordering among subgoals is critical for the performance of planning
algorithms. Thus, the study of subgoal correlations has required the attention
of the planning community. One school of thought attempts to pre-process the
control knowledge gained from the specifications of operators and goals to con-
struct a total order on a group of subgoals, before the search begins [4, 6, 10, 12].
A second category includes online ordering methods that focus on detecting and
resolving goal condition conflicts from an existing partially ordered plan [5, 8].

3 Planning with Recursive Subgoals

In this paper, we introduce a strategy of dividing planning goals into a sequence
of serializable subgoals. Informally, our strategy is to decompose a planning
problem recursively into a set of subgoals and then to define a strict ordering of
these subgoals.

3.1 State Space Graph

We begin our formal description of recursive subgoals with the introduction of
the state space graph of a planning problem.

Definition 2. Let S = {s1, s2, . . .} be a set of all possible states of a planning
system. Let O = {o1, o2, . . .} be a set of operators defined for a planning problem.
The goal of a planning problem can be represented by G as a set of atomic
conditions (see also Definition 1 in Section 1).

Definition 3. The state space of a planning problem can be represented by a
directed graph G = {V, E, fe, sinit, Sgoal, fs, fo}, where

1. V = {v1, v2, . . .}, a set of vertices.
2. E = {e1, e2, . . .}, a set of directed edges.
3. Every edge ei connects a pair of vertices {vj , vk}, where vj and vk are source

and destination vertices of an edge, respectively. fe: E → V is a function
that maps an edge to its source and destination vertices.

4. sinit is the initial state of a planning problem. sinit ∈ S.

20 H. Yu et al.

5. Sgoal is the set of all system states that meet every condition in G. Sgoal ⊆ S.
6. fs: V → S is a function that maps every vertex vi in V to a distinct system

state si that can be reached from the initial state sinit. fs(vi) = si. fs(V) ⊆
S. A planning problem is solvable if Sgoal ∩ fs(V) �= φ. For the rest of the
notation in Section 3, we assume that a planning problem is solvable.

7. Edges represent the transitions between two system states in fs(V). fo: E →
O is a function that maps every edge ei in E to an operator oi. This function
does not enforce a one-to-one mapping, i.e. ∃i and j, where i �= j and fo(ei)
= fo(ej).

3.2 Subgoals

Definition 4. Let GOAL = {g1, g2, . . . , gn} be a set of subgoals defined for a
planning problem.

Any subgoal gi of a planning problem can be represented by Pi as a set of
atomic conditions with the following four properties:

1. Pi ⊆ G. Subgoals are easier to reach than the goal of a problem because the
conditions for subgoals are subsets of the conditions for the problem goal.

2. G =
⋃ Pi, 1 ≤ i ≤ n. The problem goal can be reached when we reach a

state that meets the conditions for all the subgoals.
3. Let fgs: GOAL → S be a function of mapping a subgoal gi to a set of

all states that can be reached from sinit and meet the conditions for gi.
Clearly, Sgoal ⊆ fgs(gi) ⊆ fs(V). If Pi = φ, fgs(gi) = fs(V); if Pi = G,
fgs(gi) = Sgoal.

4. Let Gi be the state space graph that consists of all states in fgs(gi) and
transitions between the states. Gi is a subgraph of G.

3.3 Serializable Subgoals

According to Korf [11], a set of subgoals is serializable if a specific ordering
among them exists. Although an optimal solution is not guaranteed to be found,
this ordering ensures that a problem is always solvable by following the sequence
of the subgoals without ever violating any previously reached subgoals.

We use this definition and give a formal definition of serializable subgoals
based on the state space graph of a planning problem.

Definition 5. A set of subgoals in GOAL is serializable if it has the following
properties:

1. GOAL contains an ordered list of subgoals. g1 is the first subgoal and gn is
the last subgoal. The search for a solution follows the order of the subgoals.

2. Pn = G and fgs(gn) = Sgoal. That is, the set of conditions for the last
subgoal is the same as the goal of the problem. If the last subgoal is reached,
the problem is solved.

3. P1 ⊆ P2 ⊆ . . . ⊆ Pn−1 ⊆ Pn. That is, the set of conditions for a subgoal is
a subset of the conditions for all subsequent subgoals.

Planning with Recursive Subgoals 21

4. fgs(gn) ⊆ fgs(gn−1) ⊆ . . . fgs(g2) ⊆ fgs(g1). That is, the set of all states
that satisfy the conditions for a subgoal is a subset of all states that satisfy
the conditions for every preceding subgoal. This property indicates that the
state space of a search algorithm can be reduced after reaching intermediate
subgoals.

5. Let Gi = {Vi, Ei, fi, sinit, Sgoal, fs, fo} be the state space graph of subgoal i,
Vn ⊆ Vn−1 ⊆ Vn−2 ⊆ . . . ⊆ V1 ⊆ V . As a result, Gi is a subgraph of Gj , for
every i and j, where 1 ≤ j ≤ i ≤ n.

6. Define Adjacent(vi, vj , G) = true if there exists an edge in G that connects
vj from vi. Define Connect(vi, vj , G) = true if Adjacent(vi, vj , G) = true
or, ∃vk, Connect(vi, vk, G) = true and Adjacent(vk, vj , G) = true. In other
words, Connect(vi, vj , G) = true if and only if there is a sequence of edges
that connects vertex vj from vi.

If a sequence of subgoals is serializable, a graph Gi that corresponds to
any subgoal gi has the following property: for any vi ∈ Vi, ∃vj ∈ Vi+1,
Connect(vi, vj , Gi) = true. That is, every state that meets the conditions of
subgoal gi can reach at least one state within the state space of subgoal gi+1
without violating the conditions set for subgoal gi. Therefore, serializable
subgoals ensure that a solution can be found if it exists.

3.4 Recursive Subgoals

The recursive subgoal strategy offers a simple and effective solution to the for-
mation and ordering of subgoals from a single goal. This strategy divides the
goal of a planning problem recursively into a sequence of subgoals. These sub-
goals, which will be shown by examples in Section 5, have the following property:
reaching one subgoal results in a reduction of a problem to the same problem at
a smaller scale. A formal definition of recursive subgoals is given below.

Definition 6. A sequence of subgoals is recursive if it meets the following con-
dition:

Let P be a set of the same problems of different scales. P = {P1, P2, . . . , Pm}.
Pi is smaller than Pi′ , if i < i′. Then reaching subgoal gj in Pi and reaching
subgoal gj+1 in Pi+1 are essentially the same problem for 1 ≤ j ≤ i < m.
Let Gi,j be the state space graph corresponding to subgoal gj of Pi. Then Gi,j

∼=
Gi+1,j+1; i.e., Gi,j and Gi+1,j+1 are isomorphic.

The division of recursive subgoals does not guarantee serializability among
subgoals. We consider three different scenarios as to the applicability of this
approach.

1. If a solution exists in any configuration of problems at any scale, the division
of recursive subgoals always preserves the subgoal serializability. An example
of a domain belonging to this category is the Tower of Hanoi [1], in which
any two configurations are reachable from each other.

2. If a solution does not always exist in any configuration of a problem at
any scale, but reaching one recursive subgoal never leads a problem at a

22 H. Yu et al.

smaller scale to an unsolvable configuration, we can still preserve the subgoal
serializability on this problem. We show in Section 5 that the Sliding-tile
puzzle falls into this category.

3. Recursive subgoals are non-serializable if we cannot avoid the situation of
backtracking any previous recursive goals during the search for a complete
solution.

4 The Recursive GA-Based Planning Algorithm

The recursive planning heuristic is incorporated into the genetic-based planning
algorithm. This algorithm differs from the traditional GA approaches in two as-
pects. First, operators are encoded as floating-point numbers to eliminate invalid
operators in a plan. Second, the search process is divided into multiple phases,
with each phase an independent GA run. Thus, we can build the solutions incre-
mentally by combining the solutions found in each individual phase. In addition,
the fitness of a solution is evaluated with two independent aspects: the goal
fitness evaluates the quality of a plan (how well the plan reaches goal specifica-
tions); the cost fitness evaluates the efficiency of a plan. A detail description of
this planning algorithm can be found in [14].

If the goal of a planning problem is divided into recursive subgoals, we can
apply a multi-phase GA to search for solutions to reach every subgoal. The num-
ber of necessary phases to reach a subgoal depends on the difficulty of subgoals.
Only when a subgoal is reached in a phase can GA proceed to search for the
next subgoal in subsequent phases. The final solution is the concatenation of
the solutions to all subgoals that have been attempted in a single GA run. The
following pseudo code illustrates the search procedure of this algorithm.

(1) Start GA. Initialize population.
(2) Set the first subgoal of the problem as the current search goal.
(3) While the specified number of phases are not finished or the

final goal is not reached
(a) While the specified number of generations for a phase are

not finished, do
(i) Evaluate each individual in the population.
(ii) Select individuals for the next generation.
(iii) Perform crossover and mutation.
(iv) Replace old population with new population.

(b) Select the best solution for this phase and keep it.
(c) If the current subgoal is reached, set the next subgoal

as the current search goal.
(d) Randomly initialize population and start the next phase.

The search starts from the final state of the best solution
in the previous phase.

(4) Construct the final solution by concatenating the best
solutions from all phases.

Planning with Recursive Subgoals 23

5 Case Study: The Sliding-Tile Puzzle

Sliding-tile puzzles consist of a number of moving blocks and a board on which
the blocks can slide. Such problems are sometimes used in AI textbooks to
illustrate heuristic search methods. For example, Russell and Norvig [13] discuss
the 4 × 4 Sliding-tile puzzle shown in Figure 1.

Given an initial configuration, say the one in Figure 1(a), the aim is to reach
the goal configuration in Figure 1(b) by sliding the blocks without lifting them
from the board. Solutions do not exist for every possible combinations of initial
and goal configurations. Johnson and Story show that a solution exists only when
the initial configuration is an even permutation of the goal configuration [9].

7 5

(a) (b)

123

6 4

891011

12131415

64

1

5

2

7

3

8 9 10 11

12 13 14 15

Fig. 1. The initial and goal configurations of a 4 × 4 Sliding-tile puzzle. (a) The initial
configuration. (b) The goal configuration

Figure 2 shows one approach to create recursive subgoals for solving a 4 × 4
Sliding-tile puzzle. The first subgoal is to have the tiles located in the fourth
row and fourth column in their desired positions, see Figure 2(a). After the first
subgoal is reached, the problem is reduced to a 3 × 3 Sliding-tile puzzle. Then
we work on the second subgoal: moving the remaining tiles in the third row and
third column to the correct positions, shown in Figure 2(b). After the second
subgoal is reached, the problem is reduced to a 2 × 2 Sliding-tile puzzle, which
is very easy to solve. The puzzle is solved after the third subgoal is reached, as
shown in Figure 2(c).

No operators in Sliding-tile puzzle change the parity of the permutations from
the current configuration to the goal configuration [9]. If the original problem
is solvable, after reaching one recursive subgoal we can always find an even
permutation between the current configuration and the goal configuration in
the reduced problem. Therefore, the reduced problem is solvable as long as the
original one is solvable. The goal serializability is preserved in the Sliding-tile
puzzle because we are able to reach a subgoal without moving the tiles that have
been set in place in previous subgoals.

The recursive strategy can be applied to any possible configuration of a
Sliding-tile puzzle. In a goal configuration the empty tile can be located at any
position. If the empty tile is already in one of the corners, we choose those tiles

24 H. Yu et al.

(a) (b) (c)

7

3

11

12 13 14 15

6

2

7

3

8 9 10 11

12 13 14 15

6

2

7

3

8 9 10 11

12 13 14 15

54

1

Fig. 2. The steps for solving a 4 × 4 Sliding-tile puzzle using the recursive subgoal
strategy. (a) The first subgoal. (b) The second subgoal. (c) The third subgoal

in the row and column that are farthest to that corner to be in the first subgoal.
If the empty tile is not in a corner, we first move it to the nearest corner. The
number of moves depends on how far a tile is from the nearest corner. The tiles
that are located in the innermost positions of a board are the farthest to the
corners. If n is odd, at most n − 1 moves are needed; if n is even, at most n − 2
moves are needed. After the relocation of the empty tile, the new configuration
replaces the original one as the goal configuration of the problem. As every oper-
ator in the Sliding-tile puzzle is reversible, a reversed sequence of the operators
that move the empty tile to the corner will lead the system from the new goal
configuration to the original one. The final solution is the solution to the new
goal configuration appended by this reversed sequence of operators. Figure 3(a)
and Figure 3(b) show an example of changing the goal configuration in a 4 × 4
Sliding-tile puzzle. In our experiments, the empty tile is always in top-left corner
in the goal configuration.

Fig. 3. An example showing the reconfiguration of problem goals for the recursive
subgoal strategy. (a) The original goal configuration. (b) The new goal configuration
in which the empty tile is moved to the nearest corner.

6 Experimental Results

In this section we test our strategy on the n × n Sliding-tile puzzle discussed
in Section 5. We evaluate the effectiveness of the recursive subgoal strategy by

Planning with Recursive Subgoals 25

comparing the performance of the genetic-based planning approach with and
without the subgoal strategy incorporated (also called single-goal approach).
Table 1 shows the parameters for this experiment.

Table 1. Parameter settings used in the experiment

Parameter Value

Population Size 200

Crossover Rate 0.9

Mutation Rate 0.01

Selection Scheme Tournament

Tournament Size 2

Number of Generations in Each Phase 100

In the single-goal approach, the goal fitness is evaluated with the Manhat-
tan distance of all n2 − 1 tiles between the final state of the plan and the goal
configuration. The smaller the distance, the higher the goal fitness. In the re-
cursive subgoal approach, we decompose the n × n Sliding-tile puzzle into n − 1
subgoals, {g1, g2, . . . , gn−1}. After the first subgoal is reached, the problem is
reduced to a (n − 1) × (n − 1) Sliding-tile puzzle. In every subgoal gi, we focus
on the 2 × (n − i) + 1 tiles that need to be moved to the correct positions. The
goal fitness is evaluated with the Manhattan distance of these 2 × (n − i) + 1
tiles between the final state and the goal configuration.

We test both the recursive subgoal strategy and single-goal approach on 4×4,
5 × 5, 6 × 6, and 7 × 7 Sliding-tile puzzles. For each problem size we run both
approaches 50 times. In a 4 × 4 problem, each run has up to 15 phases. We
double the number of phases each time the problem size increases by one scale
but use the same population size of 200 for all problem sizes.

The experimental results show that the single-goal approach finds solutions
in 10 out of 50 runs on the 4 × 4 sliding-tile problem and none for any larger
problems. Table 2 shows in experiments where recursive subgoal strategy is in-
corporated, the number of runs that reach every subgoal. The recursive subgoal
strategy significantly improves the search performance. It finds solutions to the
4 × 4 Sliding-tile puzzle in 48 out of 50 runs and the performance does not de-
grade as the problem size increases. Table 3 reports the average number of phases
needed to reach each subgoal from those runs that find a valid solution. The re-
sult indicates that reaching a subgoal does not make the subsequent subgoals
more difficult. We observe that the number of phases needed to reach subgoal
gi is very close to the number of phases needed to reach subgoal gi+1 in a larger
problem.

26 H. Yu et al.

Table 2. Experimental results for the recursive subgoal strategy on the Sliding-tile
puzzles: the number of runs out of 50 runs that the GA can reach each subgoal g1-g6

Problem Size 4 × 4 5 × 5 6 × 6 7 × 7

g1 49 50 50 50

g2 49 50 50 50

g3 48 50 50 50

g4 - 50 49 50

g5 - - 49 50

g6 - - - 50

Table 3. Experimental results for the recursive subgoal strategy on the Sliding-tile
puzzles: average number of phases needed to reach each subgoal from its previous
subgoal

Problem Size 4 × 4 5 × 5 6 × 6 7 × 7

g1 4.90 8.36 14.86 18.86

From g1 to g2 1.67 4.86 9.02 12.18

From g2 to g3 1.00 1.44 3.34 8.82

From g3 to g4 - 1.00 2.23 4.78

From g4 to g5 - - 1.00 1.32

From g5 to g6 - - - 1.00

7 Conclusions and Future Work

In this paper we introduce a search strategy for planning problems with con-
junctive goals and combine this search strategy with a novel GA-based planning
algorithm. Our strategy transforms the goal of a planning problem into a se-
quence of recursive subgoals. As a result, the search for a complete solution
consists of a number of independent stages. After a subgoal is achieved, the
problem is reduced to a similar problem but at a smaller scale. This strategy
is applicable to problems in which the division of recursive subgoals guarantees
the serializability of the subgoals. The experimental results on Sliding-tile puzzle
indicate that the recursive subgoal strategy is able to achieve much better search
performance than traditional single-goal planning approach.

Although we identify three classes of planning domains relative to the appli-
cability of this strategy, a crisp criterion to decide if our strategy is applicable
for a given problem proves to be a formidable task. It is also very difficult to

Planning with Recursive Subgoals 27

define the concept of “similar” planning problems. Informally, we say that a 5×5
sliding block puzzle is reduced to a 4×4 one and it is intuitively clear why these
problems are similar, but formalizing this concept is hard. Our future work will
address these open problems.

References

1. Tower of hanoi, http://www.cut-the-knot.com/recurrence/hanoi.shtml.
2. A. Barrett and D. S. Weld. Characterizing subgoal interactions for planning. In

Proc. of the 13th International Joint Conference on Artificial Intelligence (IJCAI-
93), pages 1388–1393, Chambery, France, 1993.

3. A. Barrett and D. S. Weld. Partial-order planning: evaluating possible efficiency
gains. Journal of Artificial Intelligence, 67:71–112, 1994.

4. J. Cheng and K. B. Irani. Ordering problem subgoals. In Proc. of the 11th In-
ternational Joint Conference on Artificial Intelligence (IJCAI-89), pages 931–936,
Detroit, USA, 1989.

5. M. Drummond and K. Currie. Goal ordering in partially ordered plans. In Proc.
of the 11th International Joint Conference on Artificial Intelligence (IJCAI-89),
pages 960–965, Detroit, USA, 1989.

6. O. Etzioni. Acquiring search-control knowledge via static analysis. Journal of
Artificial Intelligence, 62:255–301, 1993.

7. R. Fikes and N. Nilsson. STRIPS: A new approach to the application of theorem
proving to problem solving. Journal of Artificial Intelligence, 2(3/4):189–208, 1971.

8. J. Hertzberg and A. Horz. Towards a theory of conflict detection and resolution in
nonlinear plans. In Proc. of the 11th International Joint Conference on Artificial
Intelligence (IJCAI-89), pages 937–942, Detroit, USA, 1989.

9. W. W. Johnson and W. E. Story. Notes on the “15” puzzle. American Journal of
Mathematics, 2(4):397–404, 1879.

10. J. Koehler and J. Hoffmann. Planning with goal agendas. Technical Report 110,
Institute for Computer Science, Albert Ludwigs University, Freiburg, Germany,
1998.

11. R. E. Korf. Planning as search: A quantitative approach. Journal of Artificial
Intelligence, 33:65–88, 1987.

12. F. Lin. An ordering on subgoals for planning. Annals of Mathematics and Artificial
Intelligence, 21(2-4):321–342, 1997.

13. S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, Upper Saddle River, NJ, 1995.

14. H. Yu, D. C. Marinescu, A. S. Wu, and H. J. Siegel. A genetic approach to planning
in heterogeneous computing environments. In the 12th Heterogeneous Computing
Workshop (HCW 2003), CD-ROM Proc. of the 17th International Parallel and
Distributed Processing Symposium (IPDPS 2003). IEEE Computer Society Press,
Los Alamitos, CA, ISBN 0-7695-1926-1, 2003.

	Introduction
	Subgoal Ordering and Interaction
	Planning with Recursive Subgoals
	State Space Graph
	Subgoals
	Serializable Subgoals
	Recursive Subgoals

	The Recursive GA-Based Planning Algorithm
	Case Study: The Sliding-Tile Puzzle
	Experimental Results
	Conclusions and Future Work

