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Abstract—We have developed a genetic algorithm (GA) approach to the problem of task scheduling for multiprocessor systems. Our

approach requires minimal problem specific information and no problem specific operators or repair mechanisms. Key features of our

system include a flexible, adaptive problem representation and an incremental fitness function. Comparison with traditional scheduling

methods indicates that the GA is competitive in terms of solution quality if it has sufficient resources to perform its search. Studies in a

nonstationary environment show the GA is able to automatically adapt to changing targets.

Index Terms—Genetic algorithm, task scheduling, parallel processing.
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1 INTRODUCTION

THE problem of scheduling a set of dependent or
independent tasks to be processed in a parallel fashion

is a well-studied area. Examples of such problems include
the scheduling of jobs onto a fixed set of machines in a
manufacturing plant, the scheduling of aircraft takeoffs and
landings onto one or more landing strips, and the
scheduling of meeting rooms to multiple events of varying
size and length. With the development of parallel comput-
ing, a new version of this problem has gained increasing
attention. A program can be decomposed into a set of
smaller tasks. These tasks are likely to have dependencies
and, consequently, precedence requirements. The goal of a
scheduler is to assign tasks to available processors such that
precedence requirements between tasks are satisfied and
the overall length of time required to execute the entire
program, the schedule length or makespan, is minimized. This
problem of scheduling of tasks to be executed on a
multiprocessor computer is one of the most challenging
problems in parallel computing.

We introduce a novel genetic algorithm (GA) approach to
the problem of multiprocessor task scheduling. Two unique
features distinguish thisGA froma traditional GAalgorithm.
First, it uses a flexible representation style which allows the
GA to evolve both the structure and the value of the solutions.
This flexibility is expected to improve a GA’s ability to
identify and retain good building blocks. Second, this GA
uses a dynamically incremental fitness function which starts
out rewarding for simpler goals, gradually increasing the
difficulty of the desired fitness values or goals until a full
solution is found.As a result, ourGAplaces no restrictions on
the individuals that can be formed and does not require
special operators or repair mechanisms to ensure validity.

Rather, it attempts to give partial fitness for invalid
individuals that contain some valid subsequences of tasks
and encourages the formation of successively longer valid
subsequences. In addition, the design of our algorithm and
representation allows for dynamic target changes with no
interruption to the learningprocess. ThisGAdoes not need to
be reinitialized, adjusted, or even stopped when a target
change occurs.

We compare the performance of the GA with that of
three traditional scheduling methods: Insertion Scheduling
Heuristic (ISH) [28], Duplication Scheduling Heuristic
(DSH) [28], and Critical Path Fast Duplication (CPFD) [2].
ISH and DSH are well-known list scheduling heuristic
methods [28], [37]. CPFD consistently outperformed other
algorithms (including DSH) in a comparision of duplica-
tion-based scheduling algorithms [2]. DSH and CPFD allow
task duplication in solutions; ISH does not. We compare the
performance on the GA and these algorithms on nine
problems that have been used in similar comparison
studies. In addition, we investigate the behavior of our
GA in nonstationary environments where a target goal
changes over time.

2 TASK SCHEDULING IN PARALLEL SYSTEMS

Multiprocessor scheduling problems can be classified into
many different classes based on characteristics of the
program and tasks to be scheduled, the multiprocessor
system, and the availability of information. El Rewini et al.
[13] give a general taxonomy of scheduling problems and
discusses differences between classes.

We focus on a deterministic scheduling problem in
which there exist precedence relations among the tasks to
be scheduled and in which task duplication is allowed. A
deterministic scheduling problem is one in which all informa-
tion about the tasks and their relations to each other, such as
execution time and precedence relations, are known to the
scheduling algorithm in advance. Such problems, also
known as static scheduling problems, contrast to nondetermi-
nistic scheduling problems in which some information about
tasks and their relations may be undeterminable until
runtime, i.e., task execution time and precedence relations
may be determined by data input.
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Within the class of deterministic schedulingproblems, this
work focuses on problems with the following characteristics:

1. Precedence relations among the tasks exist. Prece-
dence relations among tasks determine the order in
which tasks must be performed.

2. Communication costs exist. Communication cost is
the cost to transmit messages from a task on one
processor to a succeeding task on a different
processor. Communication cost between two tasks
on the same processor is assumed to be zero.

3. Task duplication is allowed. The same task may be
assigned to more than one processor to reduce
communication costs and schedule length.

4. The multiprocessor system consists of a limited
number of fully connected processors.

We represent a parallel program as a directed acyclic
graph (DAG), G ¼ ðV ;EÞ, where V is a set of nodes each of
which represents a component subtask of the program and
E is a set of directed edges that specify both precedence
constraints and communication paths among nodes. Here-
after, we will use the terms node and task interchangeably. In
the DAG model, each node label gives the execution time
for the corresponding task and each edge label gives
communication time required to pass data from one node
to the next if the two nodes are assigned to different
processors during program execution. A task cannot start
until all of its predecessor tasks are complete.

Fig. 1 shows two example DAGs from [44]. We compare
performance of the GA with that of ISH, DSH, and CPFD on
these two problems as well as on the other problems listed
in Table 1.

3 BACKGROUND

Kwok and Ahmad [31] present a comprehensive review
and classification of deterministic or static scheduling
algorithms. Among the most common methods is a class
of methods called list scheduling techniques. List scheduling
techniques assign a priority to each task to be scheduled
then sort the list of tasks in decreasing priority. As
processors become available, the highest priority task in
the task list is assigned to be processed and removed from
the list. If more than one task has the same priority,
selection from among the candidate tasks is typically
random. ISH [28] is a list scheduling heuristic that was
developed to optimize scheduling DAGs with communica-
tion delays. ISH extends a basic list scheduling heuristic
from Hu [26] by attempting to insert ready tasks into
existing communication delay slots. DSH [28] improves

upon ISH by using task duplication to reduce the start time
of tasks within a schedule. DSH was one of the first
approaches to use task duplication which reduces inter-
processor communication time by scheduling tasks redun-
dantly to multiple processors. CPFD [2] is another task
duplication approach which prioritizes tasks based on
whether or not they are part of the critical path (longest
path) of a DAG.

GAs have been applied to the task scheduling problem in
a number of ways [1], [4], [9], [12], [13], [25], [30], [44]. The
two main approaches appear to be: methods that use a GA
in combination with other list scheduling techniques and
methods that use a GA to evolve the actual assignment and
order of tasks into processors.

A number of studies have used GAs to determine task
priorities for list scheduling techniques. In [1], [12], each
individual in a GA is a vector of length n where n is the
number of tasks to be scheduled. Each value of the vector
represents a task priority for Task ti; i ¼ 0; . . . ; n. Tasks are
ordered by increasing i. The initial population consists of
one individual with priority value based on the longest path
to an exit node on the DAG and the remaining individuals
consisting of randomly permuted priority values from the
first individual. Traditional crossover and mutation opera-
tors are used to generate new individuals. The job of the GA
is to generate new combinations of priority values. Tasks
are sorted based on priority value, then are scheduled using
basic list scheduling techniques. Kwok and Ahmad [30] use
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Fig. 1. Description of task dependencies for (a) the Gauss-Jordan

algorithm and (b) LU decomposition.

TABLE 1
Selected Test Problems



a coarse-grained parallel GA in combination with a list
scheduling heuristic. Individuals are again vectors of length
n, where n is the number of tasks to be scheduled. The
elements of a vector represent the tasks themselves and the
order of the tasks gives the relative task priorities. As with
other ordering problems such as the Travelling Salesman
Problem, a number of order-based crossover operators are
discussed. Mutation involves swapping tasks.

Alternatively, GAs have also been used to directly evolve
task assignment and order in processors. Hou et al. [25] use
a GA to evolve individuals consisting of multiple lists, with
each list representing the tasks assigned to one processor.
Crossover exchanges tasks between corresponding proces-
sors from two different individuals. Mutation exchanges
tasks within a single individual. This approach restricts the
actions of genetic operators to ensure the validity of evolved
individuals. As a result, some parts of the search space may
be unreachable. Correa et al. [9] improve upon Hou’s
method to allow the entire search space to be searched.
Tsuchiya et al. [44] implement a GA scheduler that allows
task duplication: One task may be assigned to multiple
processors. They compare their GA to DSH and show that
the GA is able to find comparable or better solutions. All of
these GA approaches require special methods to ensure the
validity of the initial population and to ensure the validity
of offspring generated by crossover and mutation. In other
words, all individuals generated by these systems must
represent “executable” schedules. Zomaya et al. [50]
incorporate heuristics in the generation of the initial
population of a GA and perform a thorough study of how
GA performance varies with changing parameter settings.

4 ALGORITHM DESIGN

Many GA practitioners have experienced the “you get what
you ask for” lesson. A carefully designed GA stubbornly
refuses to find useful solutions. Closer examination reveals
that the error is human; that the GA is actually giving you
what you asked for, but you asked for the wrong thing.
Typical GA designs incorporate a large number of arbitrary
human decisions which can potentially bias the algorithm’s
performance. For example, Hou’s method [25] uses re-
stricted genetic operators which was found to render parts
of the solution space unreachable and the order in which
tasks are specified in [1], [12] affects the likelihood that two
tasks will be crossed over.

Keeping this lesson in mind, we attempt to minimize the
amount of arbitrary human input in our GA design,
particularly in our problem representation and fitness
function.We implement a novel GA approach for scheduling
tasks for parallel execution on multiprocessor systems. Our
GA extends the traditional GA [24], [18] in two key ways.

First, we use a dynamically adaptive representation
which allows a GA to evolve both the structure and value of
the solutions. Our problem representation is variable in
length, uses a location independent encoding, and may
contain noncoding regions (regions which do not contribute
to encoding a solution). Both valid and invalid individuals
may evolve.

Second, we use a dynamically adaptive, incremental
fitness function which initially rewards for simple goals and
gradually increases the difficulty of the goals over the
generations. Fitness is evaluated in the same way, regard-
less of whether an individual encodes a valid or invalid
solution. Given the number of possible orderings of tasks in

processors, the percentage of valid orderings is very small.
If a GA is not restricted to only work with valid individuals,
the chance of randomly finding a valid ordering, let alone a
good valid ordering, may be very low. Restrictions,
however, may introduce unexpected biases in the system
and may require extensive revision with each new problem.
Instead of using special operators or repair mechanisms to
restrict a system to only generate valid individuals, our GA
attempts to give partial fitness for invalid individuals that
contain some valid subsequences of tasks to encourage the
formation of successively longer valid subsequences. Pre-
vious work has shown that gradually increasing the
difficulty of a GA fitness function can result in the
formation of more complex solutions [36].

The basic algorithm is the same as a traditional GA as
shown in Fig. 2. Details that are specific to our system are
described below.

4.1 Problem Representation

The importance of tightly linked or compactly encoded
building blocks in a GA representation has long been
recognized [24], [18], [17]. Compactly arranged building
blocks (building blocks with low defining length) are
expected to be more likely to be transmitted as a whole
by the genetic operators during a reproduction event [14].
Location independent problem representations, where the
information content is not fixed at specific locations on a
GA individual, have been proposed in a number of studies
as a way to help a GA identify and maintain tightly linked
building blocks. Such representations allow for rearrange-
ment of encoded information [7], [5], [16], [19], [23], [35],
[40], [46], [48], overlapping encodings which can be more
space efficient [7], [42], [45], and the appearance of
noncoding regions which affects crossover probability [7],
[32], [15], [33], [38], [43], [46], [47]. In some location
independent representations, the arrangement of encoded
information will determine what is expressed [19], [23], [35]
even though the actual encoded content is not determined
by its location. We use such a representation here: The
meaning of an encoded element is independent of its
location on an individual, but its location determines
whether or not it is expressed.

Each individual in a GA population consists of a vector of
cells. We define a cell to be a task and processor pair: ðt; pÞ.
Each cell indicates that Task t is assigned to be processed on
Processor p. The number of cells in an individualmayvary, so
individuals in a GA population will vary in length. Fig. 3
shows an example individual. The first cell of this individual
assigns Task 4 to Processor 1, the next cell assigns Task 2 to
Processor 4, etc. This representation requires that the number
of processors andnumber of tasks to beperformedare known
in advance. The problem itself defines the number of tasks to
be performed and their dependencies on each other. We
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Fig. 2. Basic steps of a typical genetic algorithm.



assume that the number of available processors is also
defined in advance.

The cells on an individual determine which tasks are
assigned to which processors. The order in which the cells
appear on an individual determines the order in which the
tasks will be performed on each processor. Individuals are
read from left to right to determine the ordering of tasks on
each processor. For example, the individual shown in Fig. 3
results in the processor assignments shown in Fig. 4. Invalid
task orderings will have their fitness value penalized by the
fitness function.

The same task may be assigned more than once to
different processors. The individual in Fig. 3 assigns Task 2
to processors 3 and 4. Tasks cannot be assigned to the same
processor more than once. If a task-processor pair appears
more than once on an individual, only the first (leftmost,
since individuals are read from left to right) pair is active.
Any remaining identical pairs are essentially noncoding
regions. In the example from Fig. 3, the second instance of
(4,1) is not scheduled into the processor lists in Fig. 4.

As each (task, processor) pair is read from left to right, all
active pairs are placed into FIFO queues based on their
processor specification. The content of each queue indicates
the tasks that will be performed on each processor. The
order of the tasks in each queue indicates the order in which
the tasks are assigned to be executed on each processor.
Thus, the order in which tasks will be performed on each
processor depends on the order in which the task-processor
pairs appear on an individual.

The initial population is initialized with randomly
generated individuals. Each individual consists of exactly
one copy of each task. As a result, the length of all
individuals in an initial population is equal to the number
of tasks in the target DAG. Each task is randomly assigned
to a processor.

4.2 Genetic Operators

Slight modifications to crossover and mutation are neces-
sary to work with this representation. The modified
versions of these genetic operators are described here.

4.2.1 Crossover

Recall that each individual consists of a vector of task-
processor pairs or cells. Crossover exchanges substrings of
cells between two individuals. This allows the GA to

explore new solutions while still retaining parts of
previously discovered solutions.

All experiments described here use random one-point
crossover. Random crossover involves two parent indivi-
duals. A crossover point is randomly chosen for each
parent. The segments to the right of the crossover points are
exchanged to form two offspring. Fig. 5 shows an example
of random crossover. The crossover rate gives the prob-
ability that a pair of parents will undergo crossover. In
addition, if a crossover operation generates an offspring
individual that exceeds the maximum allowed genome
length, crossover does not occur. Parents that do not
crossover transform unchanged into offspring. Parents that
do not crossover may still undergo mutation.

4.2.2 Mutation

The mutation rate indicates the probability that a cell will be
changed. As a result, the expected number of mutations per
individual is equal to the mutation rate multiplied by the
length of an individual. If a cell is selected to be mutated,
then either the task number or the processor number of that
cell will be randomly changed.

4.3 Fitness Function

A number of factors are expected to contribute to the fitness
of an individual. The fitness function separates the
evalution into two parts. The first part, task fitness, focuses
on ensuring that all tasks are performed and scheduled in
valid orders. The second part, processor fitness, attempts
to minimize processing time. The actual fitness, fitness, of a
GA individual is a weighted sum of the above two partial
fitness values.

4.3.1 Calculating task fitness

The task fitness component of the fitness function evalu-
ates whether all tasks are represented and in valid order. A
pair of tasks is independent if neither task relies on the data
output from the other task for execution. The scheduling of
a pair of tasks to a single processor is valid if the pair is
independent or if the order in which they are assigned to
the processor matches the order of their dependency. The
scheduling of a group of tasks to a single processor is valid
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Fig. 3. An example individual.

Fig. 4. Assignment of tasks from the individual in Fig. 3.

Fig. 5. Random one-point crossover randomly selects crossover points on each parent and exchanges the left segments to form offspring.



if the order of every pair of tasks in the group is valid. A

solution is valid if all of its processor schedules are valid.
Because of the complexity of the solutions, we develop

an incremental fitness function that changes over time. We

initially reward for finding short valid sequences of tasks.

Over time, we increase the length of the sequences that can

be rewarded, encouraging the GA to find and maintain

longer valid sequences. Eventually, the valid sequences will

be long enough that the individuals will represent full valid

solutions. This strategy rewards for small steps toward the

goal, to encourage the algorithm to find the complete goal.
The task fitness component of an individual’s fitness is

based on two main components: the percentage of valid

sequences of a given length and the percentage of the total

tasks specified by an individual. Initially, the fitness

function will reward for short sequences of valid tasks. A

sequence of tasks is valid if the tasks in the sequence are

arranged in a valid chronological order. When the average

fitness of the GA population exceeds a threshold fitness, the

length of the sequence for which the GA searches is

increased, thus increasing the difficulty of the fitness

function.
Calculating raw fitness: The raw fitness of an individual

reflects the percentage of sequences of a given length in an

individual that are valid sequences. For example, suppose

we are working with Problem P4. Processor 3 in Fig. 4 has

been assigned three tasks. If the current sequence length is

two, Processor 3 contains two sequences of length two, but

only one valid sequence of length two, the sequence Task2-

Task6. The sequence Task7-Task2 is not a valid sequence

because Task 7 cannot be executed before Task 2.
Assume that the problem to be solved involves P

processors and T tasks. Evolution will occur in eras,

era ¼ 0; 1; 2; . . . ; E. Initially, era ¼ 0. The maximum era

count, E � T , is a user defined parameter value. The era

counter, era, is increased when the average population

fitness exceeds a user defined threshold, thresh, and when

the number of individuals with the current maximum

fitness exceeds a user defined threshold, thresh maxfit.

Unless otherwise specified, we use thresh ¼ 0:75 and

thresh maxfit ¼ 0:1.
Let numtasksðpÞ; p ¼ 1; . . . ; P indicate the number of

tasks assigned to processor p. To calculate the raw fitness of

a processor, we need to consider two things: the first eraþ 1

(or fewer) tasks assigned to the processor and all task

sequences of length eraþ 2. The first component is

important because as era increases, the likelihood of

processors containing fewer than eraþ 2 tasks increases.

We need to reinforce the GA for these shorter sequences in

order for them to eventually build up to the measured

sequence length.
We will first determine the contribution of the first eraþ

1 or fewer tasks in a processor. Let

subseqðpÞ ¼ 1 if numtasksðpÞ > 0
0 otherwise

�
ð1Þ

and let

valseqðpÞ ¼
1 if the first eraþ 1 or fewer tasks in Processor p

are in valid order

0 otherwise:

8><
>:

ð2Þ

Equations (1) and (2) refer to individual processors. To
calculate the contribution over all processors (the contribu-
tion for the entire individual), we let

Subseq ¼
XP
p¼1

subseqðpÞ;

V alseq ¼
XP
p¼1

valseqðpÞ:

We will next determine the contribution of all sequences

of length eraþ 2 in a processor. Let

sðpÞ ¼ # sequences of length eraþ 2 in Processor p ð3Þ

and let

vðpÞ ¼ # valid seq: of length eraþ 2 in Processor p: ð4Þ

Combining (3) and (4) to determine the contribution over all

processors, we let

S ¼
XP
p¼1

sðpÞ; V ¼
XP
p¼1

vðpÞ:

The raw fitness for an individual is then calculated with

the following equation:

raw fitness ¼ V alseq þ V

Subseq þ S
: ð5Þ

Calculating the task ratio: In addition to encouraging the
system to find valid sequences of tasks, we also want to
encourage the system to include at least one copy of each task
in each solution.Wedefine the task ratio to be the percentage
of distinct tasks from the total tasks in the problem that are
represented inan individual. The task ratio is calculatedwith
the following equation:

task ratio

¼ number of distinct tasks specified on an individual

total number of tasks in the problem
:

ð6Þ

This factor penalizes solutions that do not contain at least
one copy of every task. Once all tasks are represented in an
individual, this penalty becomes null.

Effective fitness: The effective task fitness of an indivi-

dual is the product of (5) and (6).

task fitness ¼ raw fitness � task ratio: ð7Þ

This value makes up the first component of the fitness of a

GA individual.

4.3.2 Calculating processor fitness

The processor fitness component of the fitness function
encourages the formation of shorter solutions that minimize
makespan. As the length of a solution can only be measured
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if a solution exists, processor fitness ¼ 0 for all individuals
that do not encode valid solutions.

Suppose t is the runtime for a solution represented by an
individual. Let serial len equal the length of time required
to complete all tasks serially on a single processor and let
super serial len ¼ P � serial len, where P equals the num-
ber of processors. Any reasonable solution should give
t � super serial len, making super serial len a safe but
reasonable upper bound to solution runtime. The goal of
the GA is to minimize t. The processor fitness first
calculates the difference between super serial len and t
then calculates what proportion of super serial len this
difference represents:

processor fitness ¼ super serial len� t

super serial len
:

As a result, processor fitness is inversely proportional to t.
As the runtime of a solution decreases, the amount that
processor fitness contributes to the individual’s full fitness
increases.

It is important to note that, although the theoretical
maximum value of processor fitness is 1.0, in practice, this
value cannot be achieved. For processor fitness to equal
1.0, the runtime, t, of a solution would have to be zero. Since
all tasks obviously require nonzero runtime, t will never be
zero for valid individuals.

4.3.3 Calculating fitness

The task fitness component of the fitness function rewards
for the formation of valid solutions. If an individual encodes a
valid solution, the processor fitness component of the fitness
function rewards for shorter solutions. The full fitness of an
individual is a weighted sum of the task fitness and
processor fitness:

fitness ¼ ð1� bÞ � task fitnessþ b � processor fitness;

where 0:0 � b � 1:0. Unless otherwise specified, we use
b ¼ 0:2.

If an individual encodes a valid solution, the above
equation holds. It is important to note that, even though the
theoretical maximum value of fitness is 1.0, this value will
never be achieved in practice because the processor fitness
component of the fitness function can never reach 1.0 in
practice.

If an individual does not encode a valid solution, we
are unable to evaluate processor fitness. As a result,
processor fitness ¼ 0 and

fitness ¼ ð1� bÞ � task fitnessþ b � 0
¼ ð1� bÞ � task fitness:

The value of fitness is returned to the GA by the fitness
function as the fitness of an individual. The complexity of
this fitness function (and this GA1) is O(PT 2).

5 EXPERIMENTAL DETAILS

The following parameter settings were empirically deter-
mined to be good values for our GA. Unless otherwise
specified, we use the following values in our experiments:

Population size : 400
Crossover type : Random one-point
Crossover rate : 0:8
Mutation rate : 0:005
Selection method : Tournament
Stopping condition : 3; 000 generations:

We use a variable length representation with a maximum
length of two times the number of tasks in the problem,
2� T .

5.1 Comparison with Traditional List Scheduling
Methods

We first compare the performance of theGAwith that of ISH,
DSH, and CPFD on nine problems. Table 2 shows the best
solutions obtained for eachproblembyeachmethod.Because
the GA is a stochastic algorithm, we perform 50 runs for each
problem and also report its average results. The GA outper-
forms traditional methods on one problem (P5), performs as
well as the best traditional method on six problems, and
achieves the second best performance on two problems (P7
and P9). Doubling the GA population size allows the GA to
also outperform traditional methods on Problem P6. Results
indicate that, given sufficient resources, the GA is able to
equal or outperform traditional scheduling methods.

Interestingly, the data in Table 2 suggest that the
advantages of task duplication in these scheduling methods
are particularly noticeable on problems with longer com-
munication times. Problems P1 and P2 share the same DAG
and differ only in their communication times: Problem P2
has a significantly longer communication time than
Problem P1. The same holds true for Problems P3 and P4
and Problems P8 and P9. Problems P2, P4, P5, P7, and P9
have communication times that are larger than the task
execution times (significantly larger for P5) and show
noticeable improvement when using methods that allow
task duplication. Problems P1, P3, P6, and P8 have
communication times that are equal or less than task
execution times and show little improvement with the
addition of task duplication.

An examination of scalability to larger problems finds
that GA performance declines as the problem size increases.
GAs tend to require larger populations to maintain
performance as problem size increases, e.g., when P4 is
scaled up to be a 27-node problem, a GA using population
size 400 finds a minimum makespan of 680; a GA using
population size 800 finds a minimum makespan of 650.

WU ET AL.: AN INCREMENTAL GENETIC ALGORITHM APPROACH TO MULTIPROCESSOR SCHEDULING 829

TABLE 2
Minimum Makespan Found by ISH, DSH, CPFD, and GA

CI = confidence interval. �In a second set of runs in which the population
size was doubled, the GA found a minimum makespan of 36 and
average makespan of 36.92 with a 95 percent confidence interval of
0.17.

1. The computational effort of a GA is typically dominated by its fitness
evaluation.



These results indicate that a GA requires sufficient
resources in order to find good solutions.

A comparison of execution times finds that the cost for
having sufficient resources is a longer execution time. ISH,
DSH, and CPFD consistently post runtimes of less than one
second for the problems that we tested. The GA requires
significantly longer execution times. Table 3 gives the
average number of generations and seconds to find a good
solution using the GA. Traditional methods clearly outper-
form the GA in terms of execution time.

Fig. 6 shows an example of how a typical GA run
proceeds. Fig. 6a shows the evolution of population fitness.
The top line shows the best population fitness at each
generation. The bottom line shows the average population
fitness at each generation. The vertical lines indicate the
generations at which the era counter is incremented. The
start of each era is indicated at the top of the graph. The
average population fitness climbs within each era. Each
time the era counter is incremented, however, the difficulty
level of the fitness function increases and the average fitness
of the population drops. After about six eras in this run,
there are apparently enough valid task sequences to allow
the remaining eras to increment once per generation until
the maximum era ¼ 15 is reached. Fig. 6b shows the
evolution of runtime or makespan in the same run. The
minimum makespan can only be calculated from a valid
solution. Early in the run, with lower values of era, valid
solutions are found only sporadically. Over time, valid

solutions are found more consistently and the minimum
makespan decreases steadily.

5.2 Comparison Using Heterogeneous Processors

We also compare the four algorithms in a more complex
environment in which the processors are heterogeneous.
Processors 1 and 3 remain unchanged, we double the
processing time for processor 2, and we triple the proces-
sing time for processor 4. Table 4 compares the quality of
the solutions found. Our GA exhibits the best performance
on five of the problems. On Problems P3 and P4, CPFD and
DSH, respectively, perform equally as well as the GA. On
Problems P1 and P5, the GA comes in second to DSH.
Among the traditional methods, DSH performs better than
CPFD.

5.3 Performance Sensitivity to GA Fitness Function

The fitness function of a GA can have a significant impact on
the effectiveness of the algorithm. Our fitness function has
several parameters that can vary.We test the sensitivity of the
GA to variations in these values. Specifically, we examineGA
performanceonproblemsP1andP3where b 2 f0:0; 0:25; 0:5;
0:75; 1:0g and thresh 2 f0:25; 0:5; 0:75; 1:0g.

Figs. 7 and 8 show the results for Problem P1. Similar
results were obtained for Problem P3. Fig. 7 shows the
percent of runs in each experiment that find at least one
valid solution. Fig. 8a shows the minimum makespan
achieved by the GA and Fig. 8b shows the minimum
makespan found in the final generation averaged over
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TABLE 3
Average Number of Generations and Average Clock Time (in Seconds) Using a GA

CI = confidence interval.

Fig. 6. Evolution of (a) population fitness and (b) minimum makespan in response to increasing eras.



50 runs. Data are obtained for each combination of b and
thresh values. The x-axis labels indicate the b=thresh
combination for each set of runs.

Intermediate values of b consistently produce good
performance, finding a minimum makespan of 300 and
average best makespans of 300 or slightly above. The
narrow confidence intervals in Fig. 8b indicate that most
runs are able to find a best solution at or close to 300.
Varying thresh appears to have little impact on the results.

Extreme values of b have a noticeable negative impact on
GA performance. Setting b ¼ 0:0 produces suboptimal,
though still respectable, results, with minimum makespans
as high as 315. When b ¼ 0:0, the fitness function consists of
only the task fitness portion which focuses only on finding
valid solutions (it rewards for valid substrings of tasks and
rewards for having at least one copy of each task). The
length (makespan) of a solution is irrelevant as the fitness
function does not give any reward for shorter solutions. As
a result, the GA is able to find solutions; however, the lack
of pressure for smaller solutions is apparent as all of the GA
runs with b ¼ 0:0 find significantly longer solutions that
those runs with intermediate values of b. The larger
95 percent confidence interval indicates a wider range of
makespan values found.

Setting b ¼ 1:0 makes it difficult for the GA to find valid
solutions. Fig. 7 shows that the GA is unable to find a valid
solution in every run when b ¼ 1:0. When valid solutions are
found, however, theGA finds good solutions, althoughnot as

consistently as with intermediate values of b. When b ¼ 1:0,
the fitness function consists only of the processor fitness
componentwhich is activated only if an individual encodes a
valid solution. Only when an individual encodes a valid
solutionwill the fitness function return a nonzero value. As a
result, there is no feedback for partial solutions. With no
fitness reward for partial solutions consisting of short valid
task orderings, the GA has difficulty finding valid solutions.
Thus, rewarding for valid partial orderings appears to be an
important component of the algorithm’s success.

The thresh parameter appears to have little impact on
quality of solutions found for intermediate values of b. For
b ¼ 0:0 and b ¼ 1:0, performance declines with increasing
values of thresh.

5.4 Performance in Nonstationary Environments

The results from Section 5.1 indicate that, while a GA can
find very competitive solutions, its execution times are
likely to be longer than traditional methods. Why then
would one choose to use a GA over faster traditional
methods? We expect the strengths of this GA approach to
be in its flexibility and adaptability in nonstationary
environments [6], [8], [11], [10], [20], [21], [22], [27], [34],
[39], [41]. Nonstationary problem environments are those in
which the desired solution changes over time. Such
environments can be difficult for traditional scheduling
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TABLE 4
Minimum Makespan Found by ISH, DSH, CPFD, and GA

on a Heterogeneous Problem

CI = confidence interval.

Fig. 7. Problem P1: Percent of runs that find a valid solution. X-axis

indicates b=thresh values.

Fig. 8. Problem P1: X-axis indicates b=thresh values. (a) Minimum makespan. (b) Average best makespan averaged over 50 runs� with 95 percent
confidence intervals. �When b ¼ 1:0, not all 50 runs are able to find valid solutions. The average values shown are calculated only from those runs
that do find valid solutions.



algorithms; most must be restarted, many reconfigured or
reprogrammed, for each new situation. We believe that the
flexibility of our GA and its representation will allow it to
automatically adapt to changes in the fitness evaluation
with no change or interruption to the algorithm itself.

The experiments in this section investigate the GA’s
ability to adapt in a nonstationary environment where
processor speeds can change over time. Once a GA run has
started, no human intervention or interruptions are
allowed; the GA must adapt automatically to changes in
the target problem. Within a multiprocessor system,
processor loads may vary depending on the number of
tasks under execution and how they are distributed among
the processors. As a processor’s load increases, its execution
speed is expected to decrease. Ideally, as processor loads
change, the system will automatically redistribute workload
among the processors to take advantage of processors with
low load and minimize assignments to processors with high
load. An algorithm that is able to adapt automatically to
such changes can significantly improve the efficiency of
managing a multiprocessor system. In addition, the under-
lying problem has now changed and become more difficult:
multiprocessor task scheduling for heterogeneous processors.

A GA run begins by finding a task schedule for four
identical processors at minimal load. We call this situation
the base target. We change the target problem by increasing
processor speeds to double and triple the minimal speed. At
fixed intervals, each processor has a 30 percent chance of
doubling its speed and a 20 percent chance of tripling its
speed. We call these situations modified targets. We test
intervals of I ¼ f100; 500g generations.

Fig. 9 shows, in two example runs, how the evolved
solutions of a GA change as processor speed changes. “B”
indicates base target. Integer values indicate modified
processors. Processors are randomly selected to be mod-
ified. The optimal makespan for the base target is 330.
Fig. 9a shows an example run with I ¼ 100 where each
interval with a modified target is followed by an interval
with the base target. Fig. 9b shows an example run with
I ¼ 500 where multiple consecutive intervals can have
modified targets. The base target is assigned to generations
0-500 and generations 3,000-3,500 to provide a baseline
comparison.

Results indicate that this GA approach is able to
automatically adapt to changes in the target solution. In
both examples, the GA continues to improve the solutions
generated throughout a run. As expected, makespan

increases sharply after a target change to a modified target,
but solutions immediately begin to improve. Fig. 9b shows
less stable solutions than Fig. 9a. We speculate that there are
two potential causes for this difference. First, longer
intervals of 500 generations give the GA more time to
optimize solutions and converge the population for the
current target. As a result, it is less likely that the population
will have solutions that perform well for other modified
targets. Second, not having a base target in between each
modified target gives the GA no time to “neutralize” its
solutions between modified targets. Overall, the GA is able
to evolve near optimal solutions in both experiments, even
when processor speeds are increased.

6 CONCLUSIONS

We describe a novel GA approach to solving the multi-
processor task scheduling problem. We improve upon
previous GA applications to this problem by eliminating
the need for special operators or repair mechanisms to
ensure formation of valid solutions and using partial
solutions to direct the GA search. Our approach extends a
traditional GA in two ways: it uses a variable length,
location independent problem representation and it uses a
time varying incremental fitness function that rewards for
increasingly complex partial solutions. We empirically
study the strengths and weaknesses of this method and
compare its performance to that of three well-known
traditional algorithms for solving this problem. In addition,
we investigate the adaptability of this method in nonsta-
tionary environments.

We first compare the performance of our GA with three
traditional scheduling techniques: ISH, DSH, and CPFD.
The GA outperforms traditional methods on two out of nine
problems. It performs comparably on the remaining
problems. The GA’s ability appears to depend on sufficient
availability of resources. As problem size increases, the GA
requires a larger population or more generations to
maintain performance. As we increase the resources (e.g.,
population size) available to the GA, it is able to find better
solutions. The trade off for the increased resources used by
the GA is a significantly longer execution time than
traditional methods. Results also indicate that algorithms
that allow task duplication have an advantage over
algorithms that do not allow task duplication, particularly
when communication costs are high.
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Fig. 9. Two example GA runs. Evolution of best solution in a nonstationary environment. “B” indicates base target. Integer values indicate modified
processors.



We repeat the same set of experiments in a more
complex environment consisting of heterogeneous proces-
sors. The GA achieves the top performance on seven out of
nine problems and is second-best on two problems. Overall,
the GA appears to be the most flexible algorithm for
problems using heterogeneous processors. We speculate
that heterogeneous processors make it more difficult for list
scheduling algorithms to accurately estimate task priority.

We next examine the GA’s sensitivity to fitness function
parameters. We use a two part fitness function which
1) encourages the formation of valid solutions by rewarding
incrementally larger partial solutions over time and 2) en-
courages the formation of optimal solutions by rewarding for
shorter valid solutions. Experimental results indicate that
both components are necessary for the evolution of optimal
solutions. Removing the first component from the fitness
function removes thepartial credit for partial solutionswhich
makes it difficult for the GA to find valid solutions at all.
Rewards for partial solutions appear to be important for
directing the GA’s search. Removing the second component
removes the selection pressure for shorter makespans
resulting in valid solutions with slightly longer makespans.

Finally, we examine the GA’s behavior in a nonsta-
tionary environment consisting of dynamically changing
heterogenous processors. We believe that the strength of
our approach is that it can be applied to different
scheduling problems with no reconfiguration. As a result,
it should be able to dynamically monitor the progress of a
parallelized program on a multiprocessor system and
reschedule the program’s tasks as necessary to maximize
processor availability. We randomly select processors and
double or triple their processing speed for intervals of time.
These modified targets may or may not be interspersed
with base targets in which all processors have normal
processing speed (and, hence, are homogeneous). Results
indicate that the GA is able to adapt automatically to
changes in the problem to be solved. Although performance
decreases after a target change, the GA immediate begins to
improve solutions and is ultimately able to find near
optimal solutions even when one or more processors are
significantly slower than normal.

The advantages of the GA approach presented here are
that it is simple to use, requires minimal problem specific
information, and is able to effectively adapt in dynamically
changing environments. The primary disadvantage of this
approach is that it has a longer execution time than many
traditional scheduling methods.
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