
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: JUNE 2004 1423

Intelligent Automated Control of Life Support
Systems Using Proportional Representations

Annie S. Wu and Ivan I. Garibay

Abstract—Effective automatic control of Advanced Life
Support Systems (ALSS) is a crucial component of space ex-
ploration. An ALSS is a coupled dynamical system which can
be extremely sensitive and difficult to predict. As a result, such
systems can be difficult to control using deliberative and deter-
ministic methods. We investigate the performance of two machine
learning algorithms, a genetic algorithm (GA) and a stochastic
hill-climber (SH), on the problem of learning how to control
an ALSS, and compare the impact of two different types of
problem representations on the performance of both algorithms.
We perform experiments on three ALSS optimization problems
using five strategies with multiple variations of a proportional
representation for a total of 120 experiments. Results indicate that
although a proportional representation can effectively boost GA
performance, it does not necessarily have the same effect on other
algorithms such as SH. Results also support previous conclusions
[23] that multivector control strategies are an effective method for
control of coupled dynamical systems.

Index Terms—Genetic algorithm (GA), life support system
control, resource allocation, proportional genetic algorithm, gene
expression, proportional representation, stochastic hill-climbing
(SH).

I. INTRODUCTION

AS TECHNOLOGY advances in the space industry, the op-
portunity and need for long term extraterrestrial missions

will increase. Such missions include both missions in space and
extraterrestrial planetary habitats. In all cases, a necessary ele-
ment for the success and productivity of a mission is an effective
Advanced Life Support System (ALSS). A closed habitat such
as a planetary or space habitat is composed of multiple compo-
nents, e.g., crew, air, water, plants, climate, stores, and waste, all
of which interact in a complex manner. An ALSS controls the
necessary processes that regenerate basic life support products
such as air, water, and food within a habitat. As a result, it min-
imizes the need to store large amounts of consumable products
and minimizes the need for frequent resupply of such products.

Energy is required to produce food, regenerate air, purify
water, and process waste. A closed habitat may be limited to a
pre-defined amount of stored energy or may be exposed to a reli-
able, fixed energy source such as the sun or regular air currents.
The task of an ALSS is to distribute available energy resources
among the required tasks as efficiently as possible to maximize
the productivity and lifetime of a habitat. The tight coupling of

Manuscript received January 8, 2003; revised December 16, 2003. This paper
was recommended by Associate Editor A. Kuba.

The authors are with the School of Computer Science, University of
Central Florida, Orlando, FL 32816-2362 USA (e-mail: aswu@cs.ucf.edu;
igaribay@cs.ucf.edu).

Digital Object Identifier 10.1109/TSMCB.2004.824522

the system components and inherent unpredictability of some
of them, e.g., the crew and climate, make this a complex task.
Nevertheless, many of the decisions and tasks of an ALSS are
routine and the development of automated or semiautomated
systems can significantly reduce human effort on tedious mon-
itoring tasks.

An ALSS is an example of a class of systems called coupled
dynamical systems. Such systems consist of deterministic sub-
systems whose behaviors are easy to predict in isolation, but
the behavior of the complete system is difficult to predict and
thus difficult to control. The majority of work on ALSS control
to date has focused on modeling and control of individual sub-
systems within a life support system, e.g., the water recovery
system or the air revitalization system. Control algorithms are
typically reactive to changing conditions but deliberative and
tailored to a specific module or set of modules [5], [11], [35].
While deliberative control systems may suffice under static con-
ditions, some element of learning or adaptability is likely to
be necessary in real world scenarios. Kortenkamp et al. [23]
present the first study that successfully uses machine learning
(ML) techniques to learn how to control an ALSS as a whole.

In this paper, we extend previous work [23] by performing a
detailed comparison of genetic algorithm (GA) and stochastic
hill-climbing (SH) approaches to ALSS control. Evaluation of
candidate solutions is performed on a newer and more com-
plete ALSS model than was previously available. As a result,
successful results lend even stronger support to the viability of
ML techniques in the development of autonomous ALSS con-
trols. For both algorithms, problem representation determines
the shape of the landscape which determines the solutions that
are reachable from any particular solution. We examine the per-
formance of these algorithms using two significantly different
types of problem representations.

II. BACKGROUND

A. ALSS Simulator

We have implemented an ALSS simulator that models the
basic processes occurring in the Bioregenerative Planetary Life
Support System Test Complex (BIO-Plex) developed by NASA
Johnson Space Center [4], [23], [38]. This simulator is used to
evaluate the candidate control strategies generated by our algo-
rithm. Because of time and computational constraints, the ALSS
simulator is a simplified model of the actual BIO-Plex simu-
lator. We expect our learning algorithm to be easily linkable to
the BIO-Plex simulator, if desired.

In each time step, the ALSS accepts as input the vector of
control parameters listed in Table I. A continuous value from

1083-4419/04$20.00 © 2004 IEEE

1424 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: JUNE 2004

TABLE I
VECTOR OF CONTROL PARAMETERS~c OF ALSS SIMULATOR

zero to five indicates energy allocation to water, air, and food
processing, as well as water allocation to crew and crops. Larger
values indicate more energy and water. There are four discrete
activity levels for the crew: sleep (0), low activity (1), moderate
activity (2), and high activity (3). A binary value each indicates
whether or not water, air, and food stores will be used. At the
end of a simulator run, the ALSS outputs measures of mission
duration in simulation time steps or ticks (of approximately one
hour) and mission productivity in units of “science” for that par-
ticular run. A simulator run ends when resources are exhausted
and the environment becomes unable to support human life. The
diagrams in Fig. 1 describe the basic processes and transforma-
tions that take place in the ALSS simulator in each time step.

1) The crew process consumes clean air, clean water, and
food from the environment and produces dirty air, dirty
water and science. The consumption and production rates
are determined by the activity level input parameter. The
higher the activity level, the greater the consumption of
resources and production of resulting products. An in-
ternal simulation parameter, crew status, represents the
health of the crew. A lack of resources for multiple con-
secutive time steps results in crew extinction and the end
of the simulation.

2) The crops process consumes clean air, clean water, dirty
air, and energy and produces dirty water and food. Pro-
duction of food depends on the crop status and on the
availability of the consumed products. The crop status
represents the current crop health, and decreases if there
is insufficient air, water, or energy. Lack of consumables
over multiple consecutive time steps results in crop expi-
ration and the end of food production.

3) The air recovery process consumes energy and dirty air
and produces clean air. The amount of clear air produced
depends on the available energy. Lack of energy for three
consecutive time steps shuts down this process (shut
down period). If energy is restored, the process requires
two consecutive time steps with adequate energy supply,
(warm up period) to restart the production of clean air.

4) The water recovery process consumes energy and dirty
water and produces clean water. This process is analo-
gous to the air recovery system, but with warm up and
shut down periods of ten and five simulation time steps,
respectively.

A detailed mathematical description of the simulator is given
in the Appendix.

Fig. 1. Basic transitions in the ALSS simulator.

B. Related Work

Automated and semi-automated control of ALSS attempts to
relieve the workload of human operators and crew members,
moving them from a “vigilant monitoring” role to a “supervi-
sory monitoring” role and allowing them more time to perform
the more complex tasks of a mission [35]. Although live subject
experiments have been and continue to be performed, mathe-
matical modeling and simulation studies are also prevalent due
to their significantly lower cost and high controllability. Such
simulations use mathematical models to approximate and simu-
late the interactions that are expected to occur for any given set
of input conditions [15], [16], [19], [22]. Studies of autonomous
or semi-autonomous control of various individual subsystems
of an ALSS include a three-tier hierarchical control of water
recovery and air regeneration systems [35], a market-auction-
based approach to managing power allocation and surges for a
partially modeled ALSS [11], and various approaches for con-
trol of environmental management systems [15], [16], [35].

Kortenkamp et al. [23] are the first to evaluate ML methods
for learning effective ALSS energy allocations using an early
version of the BIO-Plex simulation. They find both the GA and
reinforcement learning to be viable choices for maximizing ei-
ther or both the mission duration and productivity of a single
simulator run. Two different GA implementations are tested. In
the first GA method, each GA individual specifies a single set
of control parameters. The fitness of an individual is based on
the duration or productivity of a run that uses that individual’s
parameter setting in every time step. A fitness function that
optimizes for mission duration produces an optimal run of 31
ticks with 148 units of science. A fitness function that optimizes
for productivity generates a maximum of 184 units of science
with a mission length of 26 ticks. By comparison, reinforcement
learning performs slightly better than the GA in terms of mis-
sion duration and about twice as well in terms of productivity.
The second GA approach allows each GA individual to specify
multiple sets of parameter values. These sets of values are
used in consecutive time steps in a simulation run. The fit-
ness of an individual is based on the duration and productivity
of a simulation over the time steps it takes to use all param-
eter sets specified by that individual. The next individual to be
evaluated executes its parameter values in the next time steps
of the same simulation. This multistep GA produces a signifi-
cant improvement in performance, reaching a mission duration
of 702 ticks (when optimizing for ticks) or a productivity of over
1800 units of science (when optimizing for science). Increasing

WU AND GARIBAY: INTELLIGENT AUTOMATED CONTROL OF LIFE SUPPORT SYSTEMS USING PROPORTIONAL REPRESENTATIONS 1425

the number of sets of parameters and the target fitness values
over multiple runs appears to improve the quality of solutions
generated.

Within the area of resource allocation, GAs have been
successfully applied to a number of different types of problems.
For example, in wireless communications, GAs are able to
learn effective and adaptive frequency allocation strategies
[36], [37], [39]. Military applications have used GAs to allocate
resources such as aircraft [1], weapons [30], and sorties [31].
Lau and Tsang [25] apply a hybrid algorithm combining a GA
with Guided Local Search to solve the Generalized Assignment
Problem. Callaghan et al. [8] use a GA to optimize land
allocation. Baglioni et al. [3] describe an evolutionary approach
to financial asset allocation. Cousins et al. [10] describe a
hybrid GA method for memory allocation in high-performance
computing systems. Papavassiliou et al. [32], [33] examine the
integration of agents and GAs for network management. The
problem of optimizing resource allocation is closely related to
scheduling and routing problems that have been widely studied
in the GA field [6], [27], [29].

III. EXPERIMENTAL DETAILS

A. Algorithm Descriptions

1) GA: A GA [20], [18] is a learning algorithm based on
principles from natural selection and genetic reproduction. Key
features that distinguish GAs from other algorithms include:

1) A population of individuals where each individual repre-
sents a potential solution to the problem to be solved;

2) A fitness function that evaluates the utility of each indi-
vidual as a solution;

3) A selection function that selects individuals or “parents”
for reproduction based on their fitness; and

4) Idealized genetic operators that create new individuals
from selected parents without destroying all information
from the parent individuals.

Fig. 2 shows the basic steps of a GA. The initial population
may be initialized randomly or with user-defined individuals.
The GA then iterates through an evaluate-select-reproduce cycle
until a stopping condition is satisfied. Table II gives the GA pa-
rameter settings used in this work. Values were experimentally
selected to provide good performance.

2) SH: Hill-climbing [2], [12] is a simple optimization algo-
rithm that has proven to be a competitive alternative to GAs. If
we visualize an optimization problem as a landscape on which
each point corresponds to a solution and its height corresponds
to the fitness of the solution, a hill-climbing algorithm searches
for peaks by repeatedly moving to adjacent points of higher fit-
ness. SH is a probabilistic variant of hill-climbing in which the
search for adjacent points is stochastic and not deterministic. In
the GA community, SH is a widely accepted baseline compar-
ison of GA effectiveness for given problems [21], [28]. The SH
algorithms used here adopt the problem representation, the fit-
ness function and the mutation operator of their corresponding
GA variant, but they use the following search procedure.

1) Choose one individual at random. Call this individual the
best-individual.

Fig. 2. Basic steps of a typical GA.

TABLE II
CONSTANT PARAMETER SETTINGS FOR ALL GA RUNS

2) If the termination condition is satisfied, stop and return
best-individual.

3) Mutate best-individual. If the mutation produces an indi-
vidual with higher fitness, then set best-individual to the
mutated individual. Go to step 2.

The termination condition is set to 50 000 fitness evalua-
tions—equal to the number of evaluations in each GA run.
Mutation rate was experimentally optimized and set to 0.05.

B. Fitness Details

1) The Optimization Problem: An ALSS simulation
(Definition 1)1 is a coupled dynamical system with a set of
internal simulation states (Definition 3), a control strategy
(Definition 5), and a transition function (Definition 6). The
next step of a simulation (Definition 7) is calculated deter-
ministically using the transition equations that compute the
next simulation state based on the current state and the current
control variables provided by the control strategy. The ML
problem is to find a controller or, equivalently, to find a set
of control variables to be used in each simulation step that
optimizes one or more outcomes of a simulation. A simulation
ends when its environment is no longer able to support human
life (Definition 9).

In this paper, we study three different optimization problems.

1) Finding a control strategy that maximizes mission pro-
ductivity (Definition 11).

2) Finding a control strategy that maximizes mission dura-
tion (Definition 12).

3) Finding a control strategy that optimizes both mission
productivity and duration (Definition 13).

2) The Control Strategies: The control strategy (Definition
5) throughout this paper uses vectors of control parameters
circularly within a simulation. Therefore, the optimization
problem for the various algorithms we test—GA and SH with

1A formal definition of this system is given in the Appendix.

1426 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: JUNE 2004

both binary and proportional representations—is restricted to
learning the appropriate vectors of control parameters that,
when circulated in a simulation, produce a maximized outcome
of mission productivity, duration, or both. We call this control
strategy . We perform experiments with , and

vectors of parameters and refer to these instantiations of
the control strategy as , respectively. Each
individual or candidate solution is a set of vectors of control
parameters.

3) The Fitness Measures: The fitness of an individual is de-
termined by running an ALSS simulation using an individual’s

vectors and control strategy . We test three fitness measures
in our experiments.

1) Optimizing mission productivity: the total amount of “sci-
ence” produced by the crew (Definition 14).

2) Optimizing mission duration: the number of time steps at
which the simulation ends (Definition 15).

3) Optimizing both: a weighted addition of the previous two
measures (Definition 16).

C. Problem Representation Details

How a problem is represented in an ML algorithm determines
what can be expressed and how the solution space is connected
which in turn determines the concepts that can or cannot be
learned. How information is represented in a learning algorithm
can affect an algorithm’s expressivity, efficiency, and readability
[34]. We compare the performance of a GA and SH on two dras-
tically different problem representations: binary representation
and proportional representation.

1) Binary Representation: A typical binary representation
consists of a field of bits for each encoded parameter value. For
our problem, each vector of control parameters is a 25-bit string.
We use four bits to represent each of the five real values shown
in Table I. Four bits provide a resolution of 16 possible values
which are scaled to a real value between zero and five. A two-bit
binary encoding indicates “activity level”. A single bit encodes
whether or not to use resources from the stores. With this repre-
sentation, each individual is a bit string formed from the
concatenation of 25-bit strings, each representing one vector
of parameters. Fig. 3 shows an example individual for and
Table III gives the values that it encodes. The GA uses two-point
crossover and bit-flip mutation. The SH uses bit-flip mutation.

The strengths of binary representations are that they are very
space-efficient and that they are logical for humans to interpret.
Weaknesses include brittleness (missing, extra, or misplaced
bits can severely change encoded values) and positional biases
typically found in order-based encodings [14].

2) Proportional Representation: The proportional represen-
tation attempts to address the weaknesses of order-based en-
codings by eliminating the notion of order altogether. This
representation was initially developed for a GA [41], but can
also work with other algorithms such as SH. Encoded infor-
mation depends solely on what does and does not exist on an
individual and not on the order in which it is present. As a
result, the order of the encoding is free to evolve in response
to factors other than the expressed solution, for example, in
response to the identification and formation of building blocks.

Fig. 3. A binary encoded individual and its corresponding encoded values.

TABLE III
VALUES ENCODED BY EXAMPLE INDIVIDUAL FROM FIG. 3

The proportional representation uses a linear genome with a
multicharacter alphabet. One or more unique characters are as-
signed to each parameter or component of a solution. The value
of a parameter is determined from the relative proportions of the
assigned characters of that parameter. Thus, characters that exist
are “expressed” and, consequently, interact with other expressed
characters. Characters that do not exist are “not expressed” and
do not participate in the interactions of the expressed characters.

For example, in the ALSS problem, we are searching for
vectors of parameter values, . The
range of these values is given in Table I and will be denoted by

and . We assign a “positive” character, , and
a “negative” character, , to each parameter, as shown in
Table IV.

The number of positive and negative characters on an indi-
vidual are used to calculate the proportion of positive charac-
ters, pct, as follows:

where and . The value of
each parameter is then calculated by the equation

The calculated value may be rounded, e.g., for integer param-
eters. A typical single-vector individual of length 40
such as the one shown in Fig. 4 encodes the values shown in
Table IV. As the expressed values are completely independent
of the arrangement of characters, the individual in Fig. 5 also
encodes the values shown in Table IV.

A fixed length GA uses two-point crossover. A vari-
able-length GA uses homologous crossover [7] which
randomly selects a crossover point on the first parent, then
finds the region of highest homology (similarity) on the second
parent. Crossover occurs within the region of homology. Mu-
tation for both a GA and SH randomly switches one character

WU AND GARIBAY: INTELLIGENT AUTOMATED CONTROL OF LIFE SUPPORT SYSTEMS USING PROPORTIONAL REPRESENTATIONS 1427

TABLE IV
PGA CHARACTER ASSIGNMENTS AND ALLOCATION OF RESOURCES AS SPECIFIED BY EXAMPLE INDIVIDUALS FROM FIGS. 4 AND 5

Fig. 4. An example proportional representation individual of length 40 with a
single vector (n = 1).

Fig. 5. Another example proportional representation individual of length 40
with a single vector (n = 1). Encodes equivalent solution as individual from
Fig. 4.

to another character in the alphabet. All characters are equally
likely.

3) Comparing Binary and Proportional Representa-
tions: Although the proportional representation eliminates
positional biases, it is clearly a less compact encoding than
binary representation. Binary individuals are strings over a
binary alphabet while proportional individuals are strings over
a higher-arity alphabet. As a result, binary and proportional
individuals of identical length will likely encode solutions
spaces of different sizes. In order to fairly compare the two
representations we need to find a relationship among their indi-
vidual lengths and alphabet sizes to ensure that both algorithms
target solution spaces of comparable complexity2 .

A binary individual of length over an alphabet with
cardinality encodes different binary strings which
represent different solutions. The size of the search
space and the solution space are equal for binary representation.
A proportional individual of length over an alphabet with
cardinality encodes different multicharacter
strings. These strings are the search space of this proportional

representation and map to a solution space of

different solutions. Thus

(1)

must hold for a binary and proportional representation to encode
solution spaces of the same size. Consequently, a proportional
encoding length will typically be longer than an equivalent bi-
nary length. A complete discussion of this comparison can be
found in [41].

A binary-encoded individual requires a total length of 25 bits
to represent a single vector of values and bits to represent

2We define the search space to be the space of all encodings and the solution
space to be the space of all solutions.

vectors. We can use (1) to calculate the corresponding propor-
tional representation lengths for each value in a vector, then sum
over all values to obtain the total equivalent proportional repre-
sentation length. For example, and for the
binary representation of the first parameter—energy allocated
to water processing. The proportional representation uses two
characters to represent any single parameter, thus .
Using (1), we calculate for the first parameter. We
can compute the remaining equivalent parameter lengths for
the proportional representation in the same way, to obtain a
total equivalent proportional representation length of

for a single vector.
The required proportional representation length for vectors is

.
We compare binary representation to three proportional rep-

resentations of differing lengths, Len, and consequently, dif-
fering resolutions.

1) PSame: Fixed-length proportional representation in
which the length of an individual is the same as the
length of a binary representation individual, .
This length is 25 for a single vector of parameters
and for vectors of parameters. According to
(1), PSame is severely penalized in terms of available
resolution due to its restricted genome length.

2) PHalf: Proportional representation with a fixed-length of
one-half the equivalent length, . This length
is 40 for a single-vector case and for vectors.
PHalf is still penalized in terms of available resolution;
however, less so than PSame.

3) PMax: Proportional representation with the equivalent
length . This length is 80 for the single-vector
case and of for the -vector case. To save space,
we allow the GA to evolve variable-length individuals
with a maximum length of Len. No parsimony pressure
is applied. The SH uses fixed-length individuals of length
Len.

The proportional representation typically requires two char-
acters for each parameter, thus the total number of characters
required to represent vectors of nine parameters should be

. As the precision of similar parameters is likely to be
comparable, it is reasonable to use the same set of negative char-
acters for all corresponding vector components. The resulting
PGA requires only characters to represent vectors
of nine parameters. For example, consider the case of
vectors. The first parameter of each vector represents the value

1428 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: JUNE 2004

of energy to water. Let all three values share the same negative
character: ; but have unique positive characters: for the value
in the first vector, for the second and for the third. Similarly,
the second parameter (representing the value of energy to air) of
all three vectors share the same negative character: ; but have
unique positive characters: , and , respectively. We use
this sharing strategy for all the experiments with proportional
representation.

IV. EXPERIMENTAL RESULTS

We compare the performance of a GA and SH on finding
control parameter values for the three optimization problems
described in Section III-B.1 using the five control strategies
described in Section III-B.2 for the ALSS simulation. In each
set of experiments, we test eight algorithms: GA and SH each
using four different representations, Binary, PSame, PHalf, and
PMax, as described in Section III-B.3. Each experiment is run
40 times and the results averaged over all runs. Each run stops at
50 000 fitness evaluations. A fitness evaluation consists of one
execution of the ALSS simulation using the control parameters
to be evaluated. When the simulation terminates, a fitness value
is returned as described in Section III-B.3.

Fig. 6 summarizes the results from these 120 experiments.
For each experiment, we plot the fitness of the best solution
found, averaged over 40 runs with 95% confidence intervals.
The results are organized into three plots by optimization
problem: (A) optimizing mission productivity, (B) optimizing
mission duration, and (C) optimization of mission productivity
and duration. The -axes indicate the fitness of the solutions
found: in units of science for (A), in simulation time steps or
ticks for (B), and as a weighted combination of both for (C).
The -axis indicates the algorithms used. On this axis, from
left to right, we show a group of eight algorithms working
with strategy , then a group of eight algorithms
working with strategy , and so on until .
Within each group, the eight algorithms are, from left to right:
Binary-GA, PSame-GA, PHalf-GA, PMax-GA, Binary-SH,
PSame-SH, PHalf-SH, and PMax-SH.

Fig. 6(A) plots the results for optimizing mission produc-
tivity. Overall, performance increases as the number of control
vectors used by the control strategy increases. For ,
performance ranges from an average of 20 535 units of sci-
ence generated by PSame-GA to statistically similar averages of
29 822 and 29 748 units generated by PMax-SH and PMax-GA.
For , performance fluctuates between 30 731 and 34 931
units of science generated by Binary-GA and PHalf-GA, respec-
tively. PMax-GA performance of 34 894 is statistically similar
to that of PHalf-GA. For , performance fluctuates between
31 076 and 38 251 units of science generated by PMax-SH and
PHalf-GA. For the higher values of and ,
performance ranges from 29 05 to 38 118 and from 28 267 to
38 016 with the worst and best performances in both cases gen-
erated by PMax-SH and PSame-GA, respectively. The best per-
formance for this set of experiments (A) is 38 251 units of sci-
ence, achieved by PHalf-GA with . PSame-GA with
and PSame-GA with achieve results that are statistically

equivalent to the best. The best performance obtained by a SH
algorithm is of 37 173 by PSame-SH with which is statis-
tically worse than the best GA performance. Overall, for all the
values of in (A), the best-performing algorithms are propor-
tional GAs with only one exception: when , the perfor-
mances of PMax-SH and PMax-GA are statistically equivalent.

Fig. 6(B) plots the results for optimizing mission duration.
Again, we see an increase in performance with increasing , a
trend that appears to be independent of the optimization function
used. For , performance ranges from an average of 6 654
time steps by PSame-GA to an average of 10 030 time steps by
PMax-GA. For , the range is an average of 9 067 time steps
by PMax-SH to an average of 10 207 time steps by PSame-SH.
For and , performance ranges from 10 189 to
14 993 and from 11 287 to 15 786, respectively, with PMax-SH
performing the worst and PMax-GA performing the best in both
cases. For , performance ranges from 12 610 by PMax-SH
to 16 012 by PHalf-GA. The best performance achieved in set
(B) is an average of 16 012 simulation time steps by PHalf-GA
in the case, and PMax-GA with performance of
15 786 is statistically indistinguishable from this best. The best
performance obtained by a SH algorithm is an average of 14 615
achieved by Binary-SH with which is significantly worse
than the best GA performance. Overall, for all in (B), the
best performing algorithms are again GAs using proportional
representations, with an exception in the case of . For

, the best performing algorithm is an SH using proportional
representation.

Fig. 6(C) plots the results for optimizing both mission produc-
tivity and duration. These results exhibit similar trends as seen
in the previous plots. Performance increases with the increase
of control vectors used by control strategy . Performance
ranges are:

• for by PSame-GA to 59 781 by PMax-GA;
• for by Binary-GA to 72 641 by PHalf-GA;
• for by PMax-SH to 77 296 by PHalf-GA;
• for by PMax-SH to 78 626 by PSame-GA;
• for by PMax-SH to 78 860 by PSame-GA.

The best performance obtained in (C) is 78 860 by PSame-GA
with . The performance of 78 626 by PSame-GA with

is statistically equivalent to the best. The best performance
obtained by a SH algorithm is 75 843 by PSame-SH with

which is significantly worst than the best GA performance.
Overall, for any in (C), the best performing algorithms are
again GAs using proportional representations.

All of these experiments use the parameter settings shown in
Table II; however, additional experiments have been performed
with other mutation rates and population sizes to ensure that the
qualitative nature of the results in this section is robust and not
an artifact of a particular set of parameters.

V. DISCUSSION

According to the NFL theorem [40], no universally superior
algorithm exists; however, algorithms may be best suited for
particular problem classes. Given an algorithm, the choice of
representation can have a significant impact on its effectiveness.

WU AND GARIBAY: INTELLIGENT AUTOMATED CONTROL OF LIFE SUPPORT SYSTEMS USING PROPORTIONAL REPRESENTATIONS 1429

Fig. 6. GA and SH with binary, proportional-same, proportional-half, and proportional-max representations using control strategies � ;� ;� ;� , and � to
optimize ALSS (A) mission productivity, (B) mission duration, and (C) both. Fitness of best solution found averaged over 40 runs and 95% confidence intervals.

Simpler representations may be inadequate in the amount of in-
formation that can be expressed [13]. Complex representations
result in larger search spaces which can increase the difficulty
of a problem and the computational cost of a learning algorithm
[34]. Different types of representations may have biases that
make them more or less easily manipulated by a learning al-
gorithm [9], [24]. This work compares the performance of two
ML algorithms using two different types of problem represen-
tations applied to ALSS control.

A. Algorithms: GA Versus SH

In comparing all of the GA and SH variants that we test, we
find that GAs tend to have better overall performance than SHs
for the ALSS problem. GAs generate the best performance
in all groups (as defined by optimization objective and con-
trol strategy) with only once exception: optimizing mission
duration with . GA performance consistently increases
with increasing . SH becomes less competitive with GAs

1430 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: JUNE 2004

as increases and the worst performance is consistently and
noticeably found using PMax-SH. As problem size grows,
GA performance remains relatively stable while SH shows
noticeable decline. We attribute the weaknesses of SH to the
simplicity of the SH search strategy—move in single steps only
toward higher fitness points—which can easily become trapped
at local optima. In addition, the SH algorithm we selected does
not allow random walks among solutions of equivalent fitness
which can further exacerbate the problem of becoming trapped
(we plan to eliminate this restriction in future experiments).
The more complex operators and population based approach of
a GA appear to provide a better search strategy for this type
of problem. Nevertheless, the simple SH search strategy is
still a competitive strategy for an ALSS as it is usually only
outperformed by a small, albeit statistically significant, margin.

B. Control Strategies:

The plots from Fig. 6 show a clear trend: performance im-
proves as the number of control vectors used in the optimiza-
tion increases. This result remains fairly robust throughout our
experiments and supports previous work [23] where this same
trend is reported for a simple GA. We attribute this behavior to
the fact that more control vectors allows for a more subtle con-
trol of the ALSS, leading to noticeably improved performance.
There is, however, a tradeoff between the better control allowed
by a high and the consequent increase in the search space size.
Increasing increases the search space exponentially. As a re-
sult, we expect to see a performance drop at high values of
due to searchability issues. We do not observe such expected
behavior for high which we speculate is due to the fact that
we work with relatively low values of (from 1 to 9). We do
observe, however, that after , increases of yield dimin-
ishing performance returns.

C. Representations: Binary Versus Proportional

The proportional representation is inspired by the natural
process of gene expression and the concept that, within a
genome, what is most important is whether or not the necessary
genes exist. Of lesser impact is the order in which existing genes
are arranged. This concept led to the development of a con-
tent-based representation for GAs. Previous GA studies have
shown advantages to using a proportional representation over
traditional binary representation on several simple problems:
number matching, resource allocation, and symbolic regression
[41]. In this paper, we extend those results by showing that this
advantage persists on a significantly more complex problem.
The proportional GA consistently outperforms a binary GA
on the problem of control of a coupled dynamical system. We
suspect that advantages may be due to the proportional GA’s
ability to dynamically allocate genomic resources and adjust
resolution in response to fitness payoffs.

We also test the proportional representation in a SH. Results
indicate that, in contrast with the GA results, the performance of
a proportional SH is comparable but not necessarily better than
that of a traditional binary SH. We believe that a likely reason
for this difference is that the SH algorithm that we selected only
moves to points of greater fitness in the search space. As a re-
sult, it does not allow random walks on neutral networks of

points with equal fitness. Proportional representation is known
to have a high redundancy which forms neutral networks in the
search space that arguably can improve the search abilities of
algorithms; but for this to be beneficial, an algorithm would
have to allow random walks. We plan to re-examine SH per-
formance while allowing random walks. We should also note
that, while SH uses an operator analogous to mutation to move
within a search space, SH lacks an operator analogous to GA
recombination.

D. Resolution: P-Same Versus P-Half Versus P-Max

In Fig. 6, the -axis orders the tested algorithms into groups
of four: the Binary, PSame, PHalf, and PMax representations.
Consecutive foursomes indicate GA and SH algorithms for the
five control strategies: .

Overall, the best performing algorithms tend to be GAs
using a proportional representation. Closer examination of the
best performing proportional algorithm within each foursome
suggests that the value of can affect the type of proportional
representation that performs best. For low the best
performing algorithms all use the PMax representation. For
high the best performing algorithms tend to use
the PSame representation. For middle values of
the best performing algorithms tend to use PHalf or PMax
for a GA and PSame or PHalf for an SH. We believe that
this variation is due to the resolution-searchability tradeoff
described in Section V-B: low resolution limits the quality of
solutions, but reduces the search space allowing solutions to
be found faster; high resolution increases solution quality at
the cost of increasing the size of the space to search. Low
generates a small search space on which there is advantage
to having the maximum possible resolution, PMax, in the
representation. High results in large search spaces, making
the limited resolution and relatively smaller search space of
PSame more attractive because of its increased searchability.

E. Comparing Binary and Proportional Representations

In order to compare the relative performance of proportional
and binary representations, we calculate, for all the experiments
reported in Fig. 6, the number of times that an algorithm using
a proportional representation is statistically better, comparable,
or worse than the same algorithm using a binary representation.
Table V presents our results for the GA and Table VI for the SH.

In Table V, PSame-GA uses the same genomic length as
Binary-GA which, according to (1), puts PSame-GA at a sharp
disadvantage. Despite this limitation, PSame-GA performs better
than Binary-GA in 53% of the experiments and worse in 20%.
PHalf-GA uses a longer genome than Binary-GA, but is still
theoretically at a disadvantage because it has only half of the
genomic length required by (1) to ensure comparable resolutions.
Despite this theoretical limitation, PHalf-GA performs better
than Binary-GA in 73% of the experiments, and worse in
only 7% of the experiments. PMax-GA uses a variable-length
genome with the maximum length equal to the required genomic
length given by (1). As a result, PMax-GA and Binary-GA
are comparable in terms of available resolution. PMax-GA
performs better than Binary-GA 73% of the time and never
performs worse than Binary-GA. Overall, for all of the cases

WU AND GARIBAY: INTELLIGENT AUTOMATED CONTROL OF LIFE SUPPORT SYSTEMS USING PROPORTIONAL REPRESENTATIONS 1431

TABLE V
COMPARISON OF PROPORTIONAL-GA AND BINARY-GA

TABLE VI
COMPARISON OF PROPORTIONAL-SH AND BINARY-SH

compared in Table V, proportional GAs perform better than
binary GAs in 67% of the experiments and worse in 9% of
the experiments.

Table VI shows a very different situation for the SH algo-
rithms. The PSame-SH representation outperforms Binary-SH
in 40% of the experiments but performs worse in 20%. The
situation becomes worse as we increase the resolution of the
proportional representation with 33% better and 27% worse
for PHalf-SH, and 33% better and 60% worse for PMax-SH.
There is a clear preference for compact representations over
high resolutions. Overall, the proportional SHs perform better
than binary SHs in 35.5% of the experiments, worse in 35.5%
of experiments, and show no statistical difference in 29% of
experiments. As a result, there does not appear to be a clear
advantage to using either binary or proportional representation
in an SH.

VI. CONCLUSION

ALSSs are a crucial component for successful space ex-
ploration. An ALSS is a coupled dynamical system whose
overall behavior is difficult to predict and whose behavior is
highly sensitive to initial conditions and control parameters.
The unpredictability of such systems limits the effectiveness
of deliberative and hand-crafted control algorithms. We in-
vestigate the performance of two well known ML techniques,
GAs and SH, on the problem of learning how to control an
ALSS.

The selection of representation can have a significant impact
on the effectiveness and efficiency of a learning algorithm.
The same problem encoded with two different representations
can appear to an ML algorithm to be two entirely different
problems [26]. We compare the performance of a GA and
SH using two different types of representations: a traditional
binary representation and a novel proportional representation.
The proportional representation, originally developed for GAs,
is a content-based representation derived from the concept of

gene expression. Its ability to dynamically adapt the distri-
bution of genomic resource along with a solution allows it
to naturally evolve both parameters values and their appro-
priate resolutions. We hypothesize that this unique ability may
make the proportional representation particularly suitable for
the highly sensitive nature of coupled dynamical systems.

We perform experiments on three ALSS optimization prob-
lems using five control strategies. For each of these experiments,
we compare the performance of a GA and SH, each using a
binary representation and three variations of proportional rep-
resentations: PMax which has an encoding resolution equal to
that of the binary representation, PHalf which has an encoding
resolution that is one half of PMax, and PSame which has a se-
verely penalized encoding resolution as compared to the binary
representation.

All algorithms show increasing performance as the number
of vectors, , in the control strategy increases. We attribute
this behavior to the fact that more control vectors are likely to
allow a more precise control of the system. This result extends
previous results obtained for a simple GA to the eight algorithm-
representation combinations tested in this paper.

Experimental results show that the GA consistently performs
as well or better than the SH. The top performance is achieved
by a GA variant in all the 15 experiments, with only one ex-
ception: optimizing mission duration with strategy . In fact,
all of the best performers use the proportional representation,
supporting our hypothesis that a proportional representation is
competitive. For lower values of , PMax-GA appears to be the
strongest algorithm, and for higher values of , PSame-GA ap-
pears to be the strongest algorithm. We attribute the differences
to the tradeoff between the size of the search space and the res-
olution of the representation. For lower , the search space is
small enough to afford a full resolution of parameters, while for
higher and the corresponding larger search spaces, preference
is given to limited resolution representations to favor searcha-
bility over resolution.

Finally, we compare the relative performance of the three
proportional representation variants with binary representation
for each algorithm. When using a GA, all of the proportional
representation variants tend to be more successful than binary
representation. On average, the proportional representation GAs
outperform the binary GA 67% of the time and perform worse
than the binary GA 9% of the time. The PMax-GA represen-
tation appears to be strongest, outperforming Binary-GA 73%
of the time; exhibiting statistically equivalent performance the
remaining 27% of the time. PMax-GA is never outperformed
by Binary-GA. Comparison of proportional and binary repre-
sentations for the SH yields a very different picture. On average
the proportional SHs outperform the binary SH 35% of the
time and underperform by the same percentage. As a result,
while proportional representation yields a strong improvement
in performance for a GA, it does not significantly affect the
performance of the SH algorithms.

APPENDIX A

The simulator used in this paper is the ALSS, based on
the NASA BioPlex simulator [38]. The ALSS is a coupled

1432 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: JUNE 2004

dynamical system. The behaviors of its components or modules
are completely deterministic and can be characterized by the
state of the variables in any time step of a simulation. Transition
equations determine the next simulation step for any given set
of these state variables. The behavior of the entire system of
coupled modules, however, is difficult to predict. The following
is a mathematical description of the ALSS simulator used in
this paper.

Definition 1 (ALSS): Formally, an ALSS simulation is de-
noted by a 4-tuple

where
set of simulation states;
in is the initial state of the simulation;
control strategy that defines a vector of control param-
eters for each simulation time step;
finite set of transition equations 3

Definition 2 (Simulation Variables): Let denote the set of
all the variables associated with the simulation , then

where

Definition 3 (Simulation State): A simulation state, in ,
is a particular assignment of values for all the simulation the
variables in . The simulation state at time is

Definition 4 (Initial State): The initial simulation state de-
noted by in is a defined as follows:

where

3Due to space constraints, we do not include the transition equations. For a
complete mathematical description of the ALSS simulator used in this paper,
please refer to [17].

Definition 5 (Control Strategy): Let denote a control
strategy and be defined as follows:

where

and is the set of all posible control strategies.
Definition 6 (Transition Equations): The set of transition

equations denoted by defines how to obtain the next simula-
tion state from the current state for a given control
strategy . The simulation is a coupled dynamical system
with four components: crew, crops, air revitalization, and water
revitalization. Therefore, we have four sets of equations

For definitions of , and
, please refer to [17].

Definition 7 (Simulation Step): Applying the transition equa-
tions to the state , we obtain the next state of the sim-
ulation

where

Definition 8 (Simulation Steps): The reflexive and transi-
tive closure of is denoted by

Definition 9 (Simulation End Time): Simulation ends
when the environment variable crew status is equal to
zero (the environment is not longer able to support human life)
or when the limit time for the simulation is reached. We
denote this ending time as

where

WU AND GARIBAY: INTELLIGENT AUTOMATED CONTROL OF LIFE SUPPORT SYSTEMS USING PROPORTIONAL REPRESENTATIONS 1433

Definition 10 (Final State): The final state of simulation
is denoted by and defined as follows:

where

A. Optimization

Definition 11 (Optimization 1): Maximize mission produc-
tivity. Let denote the optimal control strategy for maxi-
mizing mission productivity and be defined as follows:

where , and

; and is the set of all posible control strategies.
Definition 12 (Optimization 2): Maximize mission duration.

Let denote the optimal control strategy for maximizing
mission duration, and be defined as follows:

where , and
; and is the set of all posible control strate-

gies.
Definition 13 (Optimization 3): Maximize mission pro-

ductivity and duration. Let denote the optimal control
strategy for maximizing mission productivity and mission
duration, and be defined as follows:

where ,
and

; and is the
set of all posible control strategies.

B. Fitness

Definition 14 (Fitness 1): Mission productivity. Let
denote the fitness of the control strategy while optimizing
mission productivity in simulation , be defined as follows:

Definition 15 (Fitness 2): Mission duration. Let de-
note the fitness of the control strategy while optimizing mis-
sion duration in simulation , be defined as follows:

Definition 16 (Fitness 3): Mission productivity and duration.
Let denote the fitness of the control strategy while
optimizing mission productivity and mission duration in simu-
lation , be defined as follows:

ACKNOWLEDGMENT

The authors would like to thank D. Kortenkamp and P.
Bonasso of NASA JSC for access to the BIO-Plex simulator
code. They would also like to thank the anonymous reviewers
for their many helpful comments and suggestions.

REFERENCES

[1] P. Abrahams, R. Balart, J. Byrnes, D. Cochran, M. J. Larkin, W. Moran,
G. Ostheimer, and A. Pollington, “MAAP: The military aircraft allo-
cation planner,” Proc. IEEE World Congr. Computer Intelligence, pp.
336–341, 1998.

[2] D. Ackley, A Connectionist Machine for Genetic Hill-
climbing. Norwell, MA: Kluwer, 1987.

[3] S. Baglioni, D. Sorbello, C. da Costa Pereira, and A. G. B. Tettamanzi,
“Evolutionary multiperiod asset allocation,” in Proc. Genetic and Evo-
lutionary Computation Conf. (GECCO), 2000, pp. 597–604.

[4] D. J. Barta, J. M. Castillo, and R. E. Fortson, “The biomass production
system for the bioregenerative planetary life support systems test com-
plex: Preliminary designs and considerations,” in Proc. 29th Int. Conf.
Environmental Systems, Paper 1999-01-2188, 1999.

[5] R. P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. P. Miller, and M. G.
Slack, “Experiences with an architecture for intelligent, reactive agents,”
J. Explor. Theor. Artificial Intell., vol. 9, no. 2/3, pp. 237–256, 1997.

[6] Handbook of Evolutionary Computation, T. Bäck, D. B. Fogel, and Z.
Michalewicz, Eds., IOP/Oxford Univ. Press, Bristol/Oxford, U.K., 1997.

[7] D. S. Burke, K. A. De Jong, J. J. Grefenstette, C. L. Ramsey, and A.
S. Wu, “Putting more genetics into genetic algorithms,” Evol. Comput.,
vol. 6, no. 4, pp. 387–410, 1998.

[8] A. R. Callaghan, A. R. Nair, and K. E. Lewis, “A genetic algorithm based
method for optimal resource allocation: A case study of the buffalo nia-
gara international airport expansion,” in Proc. 3rd World Congr. Struc-
tural and Multidisciplinary Optimization, 1999.

[9] P. C. Cheng and H. A. Simon, “The right representtion for discovery:
Finding the conservation of momentum,” in Proc. 9th Int. Workshop on
Machine Learning, 1992, pp. 62–71.

[10] D. Cousins, J. Loomis, F. Roeber, P. Schoeppner, and A.-E. Tobin, “The
embedded genetic allocator—A system to automatically optimize the
use of memory resources in high performance, scalable computing sys-
tems,” in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics, vol. 3,
1998, pp. 2166–2171.

[11] S. S. Crawford, C. W. Pawlowski, and C. K. Finn, “Power manage-
ment in regenerative life support systems using market-based control,”
in Proc. ICES, 2000.

[12] L. Davis, “Bit-climbing, representational bias, and test suite design,” in
Proc. 4th Int. Conf. Genetic Alg (ICGA), L. Booker and R. Belew, Eds.,
1991, pp. 18–23.

[13] T. G. Dietterich and R. S. Michalski, “A comparative review of selected
methods for learning from examples,” in Mach. Learn. New York,
1983, pp. 41–81.

[14] L. J. Eshelman, R. A. Caruana, and J. D. Schaffer, “Biases in the
crossover landscape,” in Proc. 3rd ICGA, 1989, pp. 10–19.

[15] C. K. Finn, “Dynamic System Modeling of Regenerative Life Support
Systems,” NASA Ames Res. Ctr., Tech. Rep. 1999-01-2040, 1999.

[16] D. H. Fleisher and K. C. Ting, “Modeling and control of plant production
for advanced life support,” in Acta Horticult., 2001.

[17] I. I. Garibay and A. S. Wu, “Advanced life support system simulation,”
Univ. Central Florida, Orlando, Tech. Rep. CS-TR-03-05, 2003.

[18] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[19] S. Goudarzi and K. C. Ting, “Top level modeling of crew component of
alss,” in Proc. 29th Int. Conf. Environmental Systems, 1999.

1434 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: JUNE 2004

[20] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor: Univ. of Michigan Press, 1975.

[21] A. Juels and M. Wattenberg et al., “Hillclimbing as a baseline method
for the evaluation of stochastic optimization algorithms,” in Advances
Neural Info. Process. Syst., vol. 8, D. S. Touretzky et al., Eds., 1995, pp.
430–436.

[22] D. Kortenkamp and S. Bell, “BioSim: An integrated simulataion of an
advanced life support system for intelligent control research,” in Proc.
7th Int. Symp. AI, Robotics, and Automation in Space, 2003.

[23] D. Kortenkamp, R. P. Bonasso, and D. Subramanian, “Distributed, au-
tonomous control of space habitats,” in Proc. IEEE Aerospace Conf.,
2001.

[24] J. H. Larkin and H. A. Simon, “Why a diagram is (sometimes) worth ten
thousand words,” Cogn. Sci., vol. 11, pp. 65–99, 1987.

[25] T. L. Lau and E. P. K. Tsang, “The guided genetic algorithm and its
application to the generalized assignment problem,” in Proc. 10th IEEE
Int. Conf. Tools with AI, 1998, pp. 336–343.

[26] K. Mathias and L. D. Whitley, “Transforming the search space with gray
coding,” in Proc. IEEE Conf. Evol. Comput., 1994, pp. 513–518.

[27] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution
Programs. New York: Springer-Verlag, 1998, ch. 10.

[28] M. Mitchell, J. H. Holland, and S. Forrest, “When will a genetic algo-
rithm outperform hill climbing,” Adv. Neural Info. Processing Syst., vol.
6, pp. 51–58, 1994.

[29] Handbook of Evolutionary Computation, T. Bäck, D. B. Fogel, and Z.
Michalewicz, Eds., IOP Pub. Ltd. & Oxford Univ. Press, 1997. V. Nissen,
“Management applications and other classical optimization problems’.

[30] Y. Owechko and S. Shams, “Comparison of neural network and genetic
algorithms for a resource allocation problem,” IEEE World Congr. Com-
putational Intelligence, vol. 7, pp. 4655–4660, 1994.

[31] S. Palaniappan, S. Zein-Sabatto, and A. Sekmen, “Dynamic multiob-
jective optimization of war resource allocation using adaptive genetic
algorithms,” in Proc. IEEE Southeast Conf., 2001, pp. 160–165.

[32] S. Papavassiliou, A. Puliafito, O. Tomarchio, and J. Ye, “Integration of
mobile agents and genetic algorithms for efficient dynamics network re-
source allocation,” in Proc. 6th IEEE Symp. Computers and Communi-
cations, 2001, pp. 456–463.

[33] , “Mobile agent-based approach for efficient network management
and resource allocation: Framework and applications,” IEEE J. Select.
Areas Commun., vol. 20, pp. 858–872, Apr. 2002.

[34] C. Sammut, “Knowledge representation,” in Machine Learning,
Neural and Statistical Classification. ser. Ellis Horwood, D. Michie,
D. J. Spiegelhalter, and C. C. Taylor, Eds. Englewood Cliffs, NJ:
Prentice-Hall, 1994, pp. 228–245.

[35] D. Schreckenghost, C. Thronesbery, P. Bonasso, D. Kortenkamp, and
C. Martin, “Intelligent control of life support for space missions,” IEEE
Intell. Syst., pp. 24–31, Sept./Oct. 2002.

[36] M. R. Sherif, I. W. Habib, M. Nagshineh, and P. Kermani, “A generic
bandwidth allocation scheme for multimedia substreams in adaptive net-
works using genetic algorithms,” in Proc. Wireless Communications and
Networking Conf., vol. 3, 1999, pp. 1243–1247.

[37] , “Adaptive allocation of resources and call admission control
for wireless ATM using genetic algorithms,” IEEE J. Select. Areas
Commun., vol. 18, pp. 268–282, Feb. 2000.

[38] T. O. Tri, “Bioregenerative planetary life support systems test complex
(BIO-Plex): Test mission objectives and facility development,” in Proc.
29th Int. Conf. Environmental. Systems, Paper 1999-01-2186, 1999.

[39] M. Williams, “Making the best use of the airways: An important re-
quirement for military communications,” Electron. Commun. Eng. J.,
pp. 75–83, 2000.

[40] D. H. Wolpert and W. G. Macready, “No free lunch theorems for opti-
mization,” IEEE Trans. Energy Conversion, vol. 1, pp. 67–82, Jan. 1997.

[41] A. S. Wu and I. Garibay, “The proportional genetic algorithm: Gene
expression in a genetic algorithm,” Genetic Programming and Evolvable
Hardware, vol. 3, no. 2, pp. 157–192, 2002.

Annie S. Wu received the Ph.D. degree in computer science and engineering
from the University of Michigan, Ann Arbor.

She is an Assistant Professor in the School of Computer Science and Di-
rector of the Evolutionary Computation Laboratory at the University of Cen-
tral Florida (UCF), Orlando. Before joining UCF, she was a National Research
Council Postdoctoral Research Associate at the Naval Research Laboratory.

Ivan Garibay received the M.S. degree in natural
language generation from the University of Central
Florida (UCF), Orlando, where he is pursuing the
Ph.D. degree in the School of Computer Science.

Before joining UCF, he was Lecturer in the
Electrical Engineering Department, Ricardo Palma
University, Lima, Peru. His research interests in-
clude genetic algorithms, evolutionary computation,
evolution of complexity, and artificial life.

