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ABSTRACT 

Genetic algorithms are commonly used to perform searches on 
complex search spaces for optimum solutions of many real-
world problems. The evolvable hardware domain presents many 
problems with complex search spaces subject to the use of a 
genetic algorithm as an optimization technique for field 
programmable gate arrays (FPGA) implementations. The 
optimization of FPGA implementations, in general,  are naturally 
difficult problems to solve using conventional genetic algorithm 
techniques due to the large number of local optima points. 
Therefore, an alternative cloning strategy is proposed which 
introduces a more powerful and diverse selection method taken 
directly from artificial biological principles. Performance studies 
of the new method provides good insight on the application of 
cloning to this domain. 

Keywords: Genetic Algorithms, Evolutionary Computing, 
Applied Cloning, Evolvable Hardware, FPGA Design. 

1.  INTRODUCTION 

Background 
Evolvable hardware is capable of realizing optimized circuits 
beyond those of conventional design of logic circuits, in effect, 
the one-bit adder, two-bit adder, and two-bit multiplier 
described in the Miller paper [4]. Miller observed that a low 
population and high number of generations are more effective 
for the genetic algorithms that are used to realize these circuits 
[4]. This paper attempts to observe the effects of applying a new 
applied cloning strategy to evolve optimum circuit designs. 
Cloning, in effect, will keep the population constraint intact 
while allowing for a larger search medium. 

Motivation 
Many researchers have explored natural biological principles 
and applied them to the field of genetic algorithms [5]. Because 
of the limited amount of natural biological principles to apply to 
genetic algorithms, this paper takes into account an artificial 
biological principle, namely cloning, and implements a genetic 
algorithm based on it. This method is taken into account 
because it allows deeper research into the effectiveness of 
applying this, and other artificial biological principles to 
evolutionary computing.  

There has also been various works in the area of evolvable 
hardware and FPGA design. Genetic algorithms for these 
particular problems have difficulty converging to optimum 
design solutions. By applying this new method of selection and 

genetic operators, a possible better optimization strategy could 
be unlocked. 

2.  EVOLVABLE HARDWARE 

Background 
Evolvable hardware uses evolutionary approaches to design 
100% functional logic, arithmetic, and electrical circuits [3,4]. 
Genetic algorithms (GA) are used for synthesizing these circuits 
[3]. Genetic algorithms are search and optimization algorithms 
adapted from biological evolutionary principles [3].  

Sometimes these hardware devices require speedy 
reconfiguration (e.g. faulty input lines or hardware used for 
learning) through a use of an automated process. This situation 
is where genetic algorithm techniques come into play, 
automating the process of realizing circuit designs that could 
potentially be realized faster than conventional human designs. 
Field programmable gate arrays are one such hardware device 
that can realize various logic circuits through evolutionary 
approaches.  

Field Programmable Gate Arrays 
Field programmable gate arrays are a subset of field 
programmable devices (FPD) [1]. FPGA are configurable 
devices consisting of an array of uncommitted circuit elements 
and interconnection resources [1]. The end user is able to 
program the FPGA to realize versatile logic configurations. 
FPGAs are composed of lookup tables (LUT), configurable 
logic blocks (CLB), and an interconnection network as seen in 
Figure 1 [1]. Figure 1(a) illustrates a top level example of an 
FPGA with CLBs and the interconnection network. Figure 1(b) 
illustrates the internals of a CLB. The FPGA has standard logic 
inputs, outputs, and a clock [1]. The lookup tables are 
multiplexers with the inputs tied to memory [1]. The 
configurable logic blocks contain the lookup tables and are 
connected to the interconnection network. Through the 
interconnection network, a CLB input can come from other 
CLB outputs or FPGA inputs. A CLB output can be routed to 
other CLB inputs, and FPGA outputs. The interconnection 
network is responsible for correctly routing each of the inputs 
and outputs to their respective locations within the FPGA. All 
of the cells are dictated by the use of an external clock. 

FPGA Abstractions 
For purpose of simplification, many of the attributes of the 
FPGA are removed, while retaining the main functionality of 
the FPGA [3]. The configurable logic blocks are removed from 



the design and the lookup tables are single individual logic 
entities in the FPGA connected to the interconnection network. 
The interconnection network limitations are removed to allow 
any LUT or FPGA input to connect to any other LUT or FPGA 
output. Therefore the routing of the LUTS can accommodate 
many versatile configurations. The only restriction to the 
interconnection network is that it must be a feed-forward 
network, in which the output routing from one LUT, with LUT 
number l, can only be done to another LUT with LUT number 
greater than l, or to any FPGA output. This is implemented to 
prevent feedback loops [4].  

The lookup table themselves will act as if there is no clock 
attached to the FPGA. The fixed bit-string will remain constant 
throughout the FPGA evaluation. The LUTs are assumed to be 
simple 4:1 multiplexers. The fixed bit-string is composed of 
four input bits, allowing any of the sixteen possible 
configurations. Some FPGA experiments limit the fixed bit-
string to logical operators [4]. In this experiment, the fixed bit-
string is not limited to allow for diverse configurations. The 
output bit is a single bit from the fixed bit-string chosen by the 
two input lines to the LUT. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: (a) Internal circuit diagram to the FPGA with CLBs 
and the Interconnection Network. (b) Diagram of the CLB 

subsection of an FPGA. 

3.  GENETIC ALGORITHM PROPERTIES  

Genetic Representation 
The genome in the genetic algorithm will represent the entire 
FPGA, by integrating the individual LUTs, their respective 

input routing, and the FPGA input and output routing into the 
encoded genome. Figure 2, illustrates the make-up of the 
genome with an FPGA having n LUTs and m outputs. The 
LUTs are composed of a binary fixed bit-string and an integer 
input routing scheme. Each output is represented by an integer 
representing the output routing. The input/output routing 
scheme is represented by an input /output table where each 
FPGA input and each LUT is represented by a unique routing 
number. If there are i inputs, and n LUTs, there are i+n unique 
routing numbers, where 0 to i-1 are reserved for the inputs and i 
to n+i -1 are used for the LUTs. The integer routing number is 
used in the representation of inputs routing into LUTs, and to 
the FPGA outputs. 

The fixed bit-string represents the behavior of each LUT, while 
the inputs to the LUTs are used to choose the certain bit in the 
bit string to map to the output of the LUT. A few constraints are 
implemented for the FPGA. The routing scheme is a feed-
forward scheme where any given LUT can only receive inputs 
from lower numbered LUTs or FPGA input, eliminating any 
possibility of feedback loops. Another constraint is to never 
allow the fixed bit string to represent a redundant logic cell, (i.e. 
a fixed string represented by all 0’s and all 1’s).  

To put the genetic representation and the FPGA into 
perspective, the following example is presented. Given an 
FPGA with 2 inputs, 4 LUTs, a bit-string with a length of 4, and 
1 output, a possible configuration of the FPGA can be mapped 
out using the genome in Figure 3. Note, the routing number is 
not the same as the LUT number, therefore routing 0 and 1 refer 
to the inputs, and routing 2 to 5 refer to LUT 1 to LUT 4 
respectively. The sample genome routes the output of LUT 4 
(routing number 5) to the output of the FPGA. The 2-bit adder 
FPGA would consist of a more complex configuration with 4 
inputs, and 3 outputs. 

 

 

 

 

 

 

 

 

Figure 2: General Genetic Representation of an FPGA 

 

 

 

 

 

 

 

 

Figure 3: An Example Genetic Representation of an FPGA 
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Fitness Function 
The fitness function of the genetic algorithm uses a logic truth 
table for fitness evaluation. The fitness represents the 
correctness of the FPGA based on the given truth table. Given 
binary inputs set, the FPGA is expected to produce a binary 
output based on the truth table. To obtain the fitness of an 
individual, the FPGA has to be evaluated through a computer 
simulation with the given inputs. The individual (genome) is 
given a point for every correct output in the truth table. 
Therefore the maximum score for the individual is the number 
of input/output sets in the truth table times the number of 
outputs for each set, which would yield the optimum individual. 
Therefore there is partial credit for a partial output match. The 
truth tables used for this paper are two-bit multipliers and two-
bit adders. 

Genetic Operators 
There are various genetic operators that will be used in this 
endeavor, including mutation and one-point random crossover 
with elitism. Mutation will occur within the LUT, mutating the 
fixed bit-string, and the routing numbers. Crossover will occur 
between the LUTs. The two genetic operations are explained in 
further detail below. 

Mutation: During mutation, the fixed bit string is 
mutated from 0 to 1 and from 1 to 0, while the routing number 
is mutated between input 0 and input i+l-1 where l is the LUT 
number, and i is the number of inputs being mutated. The output 
routing will also be mutated to allow for further adaptation. This 
particular mutation scheme is used for the routing number to 
preserve the feed-forward nature of the FPGA.  

One-Point Random Crossover with Elitism:  
During one point crossover, the LUTs are the entities subject to 
crossover. This is not the standard crossover method where each 
of the two parents is crossed over to yield two offspring. This 
crossover method takes two random individuals from the 
current population. One of the individuals could possibly be 
replaced with the elite individual based on the elite member 
crossover rate. A one-point crossover is performed on the two 
parents, and one of the resultant individuals is chosen at random 
to be inserted into the offspring population. This crossover is 
performed only between the LUTs, and not on the output 
routing portion of the genome. 

Selection 
The modified approach to this genetic algorithm includes 
applied cloning. This method is based on the artificial biological 
principle of cloning. Instead of individual cloning, which has a 
good possibly of occurrence with selection, the entire 
population undergoes cloning, and results in two identical 
population sets. Each population set undergoes the standard 
genetic operators and fitness evaluation in parallel. After the 
fitness evaluation, the two populations are compared and the 
population with the higher average fitness is kept, and the other 
population will be discarded. This method is used to maintain a 
low population size, while providing a larger search space on 
the population. Figure 4 illustrates a flow diagram of the 
process. The elitist selection strategy is performed on the single 
population instead of the cloned population. The cloned 
population selection goes before the elitist individual selection 
because it yields a better pool of individuals to choose from to 
make the resultant population in the next generation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Block Diagram Algorithm for Applied Cloning 

4.  EXPERIMENTAL DES IGN 

Genetic Algorithm Parameters 
Population Size = 50, 100, number of generations = 10,000, 
number of runs 25, crossover rate = 100%, elite member 
crossover rate = 20%, mutation rate 5%, selection method = 
elitism, cloning. 

Low population sizes and high generation number was chosen 
to reflect Miller’s implementation [4]. The crossover rate was 
set to 100% due to the nature of the random crossover method. 
Each of the resultant individuals in the offspring population will 
have to undergo crossover and possible crossover with the elite 
individual. The number of runs is limited to 25 due to the 
processor intensive nature of the problem. 

FPGA Parameters 
Number of LUTS = 16, Fixed Bit-String Length = 4, Number of 
Inputs = 4 (2-bit adder, and 2-bit multiplier), Number of 
Outputs = 3, 4 (3 for the 2-bit adder, with a carry bit, 4 for the 
2-bit multiplier) 

The FPGA Parameters are chosen arbitrarily through the 
observations of the various papers [2, 3, 4]. The number of 
LUTS implemented in the FPGA is sixteen because it allow for 
an adequate number of LUTs to evolve. All of the units are not 
necessary used for in an optimized solution, they are there to 
simply provide additional diversity in the population. 

Design Cases 
Following Miller’s paper, the circuits that are used in the 
experimental design are the two-bit adder, and the two-bit 
multiplier [4]. Truth tables will be used in the circuit design. 
Each of the circuits will undergo evaluation with a standard 
genetic algorithm, a clone implemented genetic algorithm, and a 
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standard genetic algorithm with double the population. Since 
cloning is essentially doubling the population, the success of 
cloning implementation is also compared to that of a standard 
GA with double the population. There are a total of six 
evaluations, three for each circuit. 

5.  RESULTS AND DISCUSSION 

Results 
The results of the six evaluations are discussed below. One 
interesting phenomena observed is the deceptive nature of the 
problem. The population tends to increase in fitness 
significantly in the first few generations then stabilizes. The 
large subsequent number of generations is used to search for the 
optimum solution. For the adder, the optimum individual 
exhibits a maximum fitness of 48 (16 truth table lines * 3 
outputs), while the multiplier has a maximum fitness of 64. The 
sections below will compare the cloned population to the 
standard population and the cloned population to the doubled 
population. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Graph of the Best Fitness (Top Line), Average 
Fitness (Middle Line), and Standard Deviation (Bottom Line) 

for the Two-Bit Adder Circuit with the (a) Standard 
Implementation and (b) Cloned Implementation. 

Cloning vs. Standard Population 
This comparison is strictly measured based on the population 
size. The graphs in Figures 5 (a) and (b) represent the growth 
and behavior of the standard GA and the cloned GA 
respectively for the two-bit adder implementation. The graphs 
for the two-bit multiplier are similar to the above graphs, and 
are not shown. The results at generation 10000 are listed in 
Table 1 for both the adder and the multiplier. 

 

Table 1: Table of the Average and Best Fitness at Gen. 
10000 for the Standard and Cloned Population Runs. 

Two-Bit Adder Average Best Std. Dev. 

Standard (1) 29.52 45.04 5.06 

Cloned (2) 29.41 45.20 5.17 

 

Two-Bit Multiplier Average Best Std. Dev. 

Standard (0) 42.54 59.96 7.63 

Cloned (0) 42.78 59.72 7.41 

 

At first glance, both of the populations performed equally well. 
There is no significant different in the numbers. The standard 
population realized one optimum individual and the cloned 
population two. No optimum multiplier circuit was discovered 
between the two implementations. The only major difference 
between the two populations is the computational power 
involved in reaching a solution. The applied cloning method did 
not increase the efficiency of the GA. 

Another interesting observation was the average fitness does not 
exactly converge on a single value, yet, it converges on a 
general fitness region. The average fitness remains within a 
constant band after the growth period. After that initial growth 
period, it seems the GA populations are not making an 
improvement and have stabilized. To reach higher fitnesses, it 
seems the GA has to essentially get lucky and stumble upon a 
higher fit individual. 

Cloning vs. Doubled Population 
This comparison is measured based on computational time. 
Cloning essentially represents a doubled population and is 
therefore compared to that of a GA with a doubled population. 
Figure 6 represents the behavior of the doubled population for 
the two-bit adder implementation. The results at generation 
10000 are listed in Table 2 for both the adder and the multiplier. 

Again, the doubled population exhibited no significant 
difference compared to the cloned population. The doubled 
population was able to find a much larger number of optimum 
solutions to the problem. This is perhaps due to the large range 
of individuals in the population. This gives the population more 
chances to get a lucky individual has increased its fitness. 
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Figure 6: Graph of the Best Fitness (Top Line), Average 
Fitness (Middle Line), and Standard Deviation (Bottom Line) 
for the Two-Bit Adder Circuit with the Doubled Population 

Implementation. 

 

Table 2: Table of the Average and Best Fitness at Gen. 
10000 for the Doubled and Cloned Population Runs. 

Two-Bit Adder Average Best Std. Dev. 

Double (4) 29.30 46.28 5.32 

Cloned (2) 29.41 45.20 5.17 

 

Two-Bit Multiplier Average Best Std. Dev. 

Double (4) 41.49 60.96 9.60 

Cloned (0) 42.78 59.72 7.41 

 

Discussion 
Due to the deceptive nature of the problem, the genetic 
algorithm is split into two sections, the growth section and the 
stabilize section. The initial 200 generations is the growth 
section used to mainly reach a convergent fitness (where the 
growth of the individual tends to stabilize), while the remaining 
9800 generations is the stabilize section used to attempt to reach 
the optimum fitness. The nature of the problem makes it 
difficult to compare the effect of cloning on the population. 

Cloning divides the search space into two different, but possibly 
very similar search areas. The better fitnessed population is 
chosen over the other one in the case of cloning. The problem 
has many cases where the truly better landscape section is 
discarded. Cloning has increased chances of choosing a 
population that would lead the GA close to the optimum fitness 
during the run, but due to the nature of this problem and the fact 
the GA has to essential get lucky and stumbles upon a better fit 
individual, the GA does not perform exactly in this manner. 
Instead the cloned population performs equally to that of the 
standard GA. The cloning process does not have a visible 
impact on the performance of the GA. Compared to the 

computational power required by the cloned population, a 
doubled population would be more suitable in this 
implementation. 

6.  CONCLUSION 

The applied cloning strategy is a new selection method for 
genetic algorithms discussed in this paper. The goals of this 
paper were to introduce this new method to the domain, and 
show some initial testing data with the new method. The first 
testing of applied cloning does not show significant increases on 
GA performance. It does however show a minor increase in 
convergence toward the optimum fitness.  Cloning has its merits 
with the improvement of genetic algorithms in this problem 
domain. This study unlocked the difficult nature of the problem 
domain, by illustrating how the problem reaches the many local 
optimum points in the fitness landscape. 

Because the problem is not an “easy” problem to solve, the 
effects of cloning are not as noticeable as had earlier hoped. The 
benefits of cloning appear to be not worth the computational 
cost. This problem already requires a large amount of 
computational power to execute, and instead of applying a 
cloning method, an increase in population or generation could in 
effect be more beneficial to this type of problem. There are 
other problems that could potentially benefit from the applied 
cloning strategy. These tests are only the initial tests performed 
with this strategy; concrete conclusions cannot be made about 
this method until further tests are conducted. 

Contributions 
There are two contributions made by this work in the fields of 
genetic algorithms and evolvable hardware. The research put 
forth considers a new approach to genetic algorithms and could 
possibly lead to more effective means of optimizations. This 
paper has the potential to introduce new approaches in the 
evolvable hardware field, and lend itself to new perspectives on 
different genetic algorithm implementation approaches to 
common evolvable hardware problems.  

7.  FUTURE WORK  

Because this strategy is new, it should be tested with standard 
GA problems, for instance the max ones or the royal road 
problem. By using a less complicated problem, and a more even 
fitness landscape, perhaps the true potential of applied clone can 
be discovered. 

Cloning yields two identical populations and the genetic 
operators to each of the cloned populations yielded different 
unique populations. Yet, resultant populations remained fairly 
similar through the use of conservative genetic operators 
implemented in this paper. Future work could entail the addition 
of more radical genetic operators to the cloned population, 
adding more diversity to the separate populations, and allowing 
the genetic algorithm to explore more regions of the search 
space. Another method to lessen the disruptive effects of the 
genetic operators is to use the conservative set of genetic 
operators on one cloned population and the radical set on the 
other. 
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