
Applied Cloning Techniques for a Genetic Algorithm
Used in Evolvable Hardware Design

Viet C. Trinh
vtrinh@isl.ucf.edu

Gregory A. Holifield
greg.holifield@us.army.mil

Annie S. Wu
aswu@cs.ucf.edu

School of Electrical Engineering and Computer Science
University of Central Florida

Orlando, FL 32816, USA

ABSTRACT

Genetic algorithms are commonly used to perform searches on
complex search spaces for optimum solutions of many real-
world problems. The evolvable hardware domain presents many
problems with complex search spaces subject to the use of a
genetic algorithm as an optimization technique for field
programmable gate arrays (FPGA) implementations. The
optimization of FPGA implementations, in general, are naturally
difficult problems to solve using conventional genetic algorithm
techniques due to the large number of local optima points.
Therefore, an alternative cloning strategy is proposed which
introduces a more powerful and diverse selection method taken
directly from artificial biological principles. Performance studies
of the new method provides good insight on the application of
cloning to this domain.

Keywords: Genetic Algorithms, Evolutionary Computing,
Applied Cloning, Evolvable Hardware, FPGA Design.

1. INTRODUCTION

Background
Evolvable hardware is capable of realizing optimized circuits
beyond those of conventional design of logic circuits, in effect,
the one-bit adder, two-bit adder, and two-bit multiplier
described in the Miller paper [4]. Miller observed that a low
population and high number of generations are more effective
for the genetic algorithms that are used to realize these circuits
[4]. This paper attempts to observe the effects of applying a new
applied cloning strategy to evolve optimum circuit designs.
Cloning, in effect, will keep the population constraint intact
while allowing for a larger search medium.

Motivation
Many researchers have explored natural biological principles
and applied them to the field of genetic algorithms [5]. Because
of the limited amount of natural biological principles to apply to
genetic algorithms, this paper takes into account an artificial
biological principle, namely cloning, and implements a genetic
algorithm based on it. This method is taken into account
because it allows deeper research into the effectiveness of
applying this, and other artificial biological principles to
evolutionary computing.

There has also been various works in the area of evolvable
hardware and FPGA design. Genetic algorithms for these
particular problems have difficulty converging to optimum
design solutions. By applying this new method of selection and

genetic operators, a possible better optimization strategy could
be unlocked.

2. EVOLVABLE HARDWARE

Background
Evolvable hardware uses evolutionary approaches to design
100% functional logic, arithmetic, and electrical circuits [3,4].
Genetic algorithms (GA) are used for synthesizing these circuits
[3]. Genetic algorithms are search and optimization algorithms
adapted from biological evolutionary principles [3].

Sometimes these hardware devices require speedy
reconfiguration (e.g. faulty input lines or hardware used for
learning) through a use of an automated process. This situation
is where genetic algorithm techniques come into play,
automating the process of realizing circuit designs that could
potentially be realized faster than conventional human designs.
Field programmable gate arrays are one such hardware device
that can realize various logic circuits through evolutionary
approaches.

Field Programmable Gate Arrays
Field programmable gate arrays are a subset of field
programmable devices (FPD) [1]. FPGA are configurable
devices consisting of an array of uncommitted circuit elements
and interconnection resources [1]. The end user is able to
program the FPGA to realize versatile logic configurations.
FPGAs are composed of lookup tables (LUT), configurable
logic blocks (CLB), and an interconnection network as seen in
Figure 1 [1]. Figure 1(a) illustrates a top level example of an
FPGA with CLBs and the interconnection network. Figure 1(b)
illustrates the internals of a CLB. The FPGA has standard logic
inputs, outputs, and a clock [1]. The lookup tables are
multiplexers with the inputs tied to memory [1]. The
configurable logic blocks contain the lookup tables and are
connected to the interconnection network. Through the
interconnection network, a CLB input can come from other
CLB outputs or FPGA inputs. A CLB output can be routed to
other CLB inputs, and FPGA outputs. The interconnection
network is responsible for correctly routing each of the inputs
and outputs to their respective locations within the FPGA. All
of the cells are dictated by the use of an external clock.

FPGA Abstractions
For purpose of simplification, many of the attributes of the
FPGA are removed, while retaining the main functionality of
the FPGA [3]. The configurable logic blocks are removed from

the design and the lookup tables are single individual logic
entities in the FPGA connected to the interconnection network.
The interconnection network limitations are removed to allow
any LUT or FPGA input to connect to any other LUT or FPGA
output. Therefore the routing of the LUTS can accommodate
many versatile configurations. The only restriction to the
interconnection network is that it must be a feed-forward
network, in which the output routing from one LUT, with LUT
number l, can only be done to another LUT with LUT number
greater than l, or to any FPGA output. This is implemented to
prevent feedback loops [4].

The lookup table themselves will act as if there is no clock
attached to the FPGA. The fixed bit-string will remain constant
throughout the FPGA evaluation. The LUTs are assumed to be
simple 4:1 multiplexers. The fixed bit-string is composed of
four input bits, allowing any of the sixteen possible
configurations. Some FPGA experiments limit the fixed bit-
string to logical operators [4]. In this experiment, the fixed bit-
string is not limited to allow for diverse configurations. The
output bit is a single bit from the fixed bit-string chosen by the
two input lines to the LUT.

Figure 1: (a) Internal circuit diagram to the FPGA with CLBs
and the Interconnection Network. (b) Diagram of the CLB

subsection of an FPGA.

3. GENETIC ALGORITHM PROPERTIES

Genetic Representation
The genome in the genetic algorithm will represent the entire
FPGA, by integrating the individual LUTs, their respective

input routing, and the FPGA input and output routing into the
encoded genome. Figure 2, illustrates the make-up of the
genome with an FPGA having n LUTs and m outputs. The
LUTs are composed of a binary fixed bit-string and an integer
input routing scheme. Each output is represented by an integer
representing the output routing. The input/output routing
scheme is represented by an input /output table where each
FPGA input and each LUT is represented by a unique routing
number. If there are i inputs, and n LUTs, there are i+n unique
routing numbers, where 0 to i-1 are reserved for the inputs and i
to n+i -1 are used for the LUTs. The integer routing number is
used in the representation of inputs routing into LUTs, and to
the FPGA outputs.

The fixed bit-string represents the behavior of each LUT, while
the inputs to the LUTs are used to choose the certain bit in the
bit string to map to the output of the LUT. A few constraints are
implemented for the FPGA. The routing scheme is a feed-
forward scheme where any given LUT can only receive inputs
from lower numbered LUTs or FPGA input, eliminating any
possibility of feedback loops. Another constraint is to never
allow the fixed bit string to represent a redundant logic cell, (i.e.
a fixed string represented by all 0’s and all 1’s).

To put the genetic representation and the FPGA into
perspective, the following example is presented. Given an
FPGA with 2 inputs, 4 LUTs, a bit-string with a length of 4, and
1 output, a possible configuration of the FPGA can be mapped
out using the genome in Figure 3. Note, the routing number is
not the same as the LUT number, therefore routing 0 and 1 refer
to the inputs, and routing 2 to 5 refer to LUT 1 to LUT 4
respectively. The sample genome routes the output of LUT 4
(routing number 5) to the output of the FPGA. The 2-bit adder
FPGA would consist of a more complex configuration with 4
inputs, and 3 outputs.

Figure 2: General Genetic Representation of an FPGA

Figure 3: An Example Genetic Representation of an FPGA

FPGA

CLB

Interconnection Network

CLB CLB

CLB CLB CLB

LUT

LUT

CLB

Memory

C

C

Memory

(b)

(a)

LUT 1 LUT n • OUT 1 OUT m

 LUT Input
Routing Fixed Bit-String

Lookup Table

•

0001 1 0 1100 0 2 1010 2 1

LUT 1 LUT 2 LUT 3

1001 3 2

LUT 4

5

Output

Fitness Function
The fitness function of the genetic algorithm uses a logic truth
table for fitness evaluation. The fitness represents the
correctness of the FPGA based on the given truth table. Given
binary inputs set, the FPGA is expected to produce a binary
output based on the truth table. To obtain the fitness of an
individual, the FPGA has to be evaluated through a computer
simulation with the given inputs. The individual (genome) is
given a point for every correct output in the truth table.
Therefore the maximum score for the individual is the number
of input/output sets in the truth table times the number of
outputs for each set, which would yield the optimum individual.
Therefore there is partial credit for a partial output match. The
truth tables used for this paper are two-bit multipliers and two-
bit adders.

Genetic Operators
There are various genetic operators that will be used in this
endeavor, including mutation and one-point random crossover
with elitism. Mutation will occur within the LUT, mutating the
fixed bit-string, and the routing numbers. Crossover will occur
between the LUTs. The two genetic operations are explained in
further detail below.

Mutation: During mutation, the fixed bit string is
mutated from 0 to 1 and from 1 to 0, while the routing number
is mutated between input 0 and input i+l-1 where l is the LUT
number, and i is the number of inputs being mutated. The output
routing will also be mutated to allow for further adaptation. This
particular mutation scheme is used for the routing number to
preserve the feed-forward nature of the FPGA.

One-Point Random Crossover with Elitism:
During one point crossover, the LUTs are the entities subject to
crossover. This is not the standard crossover method where each
of the two parents is crossed over to yield two offspring. This
crossover method takes two random individuals from the
current population. One of the individuals could possibly be
replaced with the elite individual based on the elite member
crossover rate. A one-point crossover is performed on the two
parents, and one of the resultant individuals is chosen at random
to be inserted into the offspring population. This crossover is
performed only between the LUTs, and not on the output
routing portion of the genome.

Selection
The modified approach to this genetic algorithm includes
applied cloning. This method is based on the artificial biological
principle of cloning. Instead of individual cloning, which has a
good possibly of occurrence with selection, the entire
population undergoes cloning, and results in two identical
population sets. Each population set undergoes the standard
genetic operators and fitness evaluation in parallel. After the
fitness evaluation, the two populations are compared and the
population with the higher average fitness is kept, and the other
population will be discarded. This method is used to maintain a
low population size, while providing a larger search space on
the population. Figure 4 illustrates a flow diagram of the
process. The elitist selection strategy is performed on the single
population instead of the cloned population. The cloned
population selection goes before the elitist individual selection
because it yields a better pool of individuals to choose from to
make the resultant population in the next generation.

Figure 4: Block Diagram Algorithm for Applied Cloning

4. EXPERIMENTAL DES IGN

Genetic Algorithm Parameters
Population Size = 50, 100, number of generations = 10,000,
number of runs 25, crossover rate = 100%, elite member
crossover rate = 20%, mutation rate 5%, selection method =
elitism, cloning.

Low population sizes and high generation number was chosen
to reflect Miller’s implementation [4]. The crossover rate was
set to 100% due to the nature of the random crossover method.
Each of the resultant individuals in the offspring population will
have to undergo crossover and possible crossover with the elite
individual. The number of runs is limited to 25 due to the
processor intensive nature of the problem.

FPGA Parameters
Number of LUTS = 16, Fixed Bit-String Length = 4, Number of
Inputs = 4 (2-bit adder, and 2-bit multiplier), Number of
Outputs = 3, 4 (3 for the 2-bit adder, with a carry bit, 4 for the
2-bit multiplier)

The FPGA Parameters are chosen arbitrarily through the
observations of the various papers [2, 3, 4]. The number of
LUTS implemented in the FPGA is sixteen because it allow for
an adequate number of LUTs to evolve. All of the units are not
necessary used for in an optimized solution, they are there to
simply provide additional diversity in the population.

Design Cases
Following Miller’s paper, the circuits that are used in the
experimental design are the two-bit adder, and the two-bit
multiplier [4]. Truth tables will be used in the circuit design.
Each of the circuits will undergo evaluation with a standard
genetic algorithm, a clone implemented genetic algorithm, and a

Resultant Population

Cloned
Population I

Elitist Selection

Genetic Operators
Fitness Evaluation

Best Population Selection

Cloned
Population II

Genetic Operators
Fitness Evaluation

standard genetic algorithm with double the population. Since
cloning is essentially doubling the population, the success of
cloning implementation is also compared to that of a standard
GA with double the population. There are a total of six
evaluations, three for each circuit.

5. RESULTS AND DISCUSSION

Results
The results of the six evaluations are discussed below. One
interesting phenomena observed is the deceptive nature of the
problem. The population tends to increase in fitness
significantly in the first few generations then stabilizes. The
large subsequent number of generations is used to search for the
optimum solution. For the adder, the optimum individual
exhibits a maximum fitness of 48 (16 truth table lines * 3
outputs), while the multiplier has a maximum fitness of 64. The
sections below will compare the cloned population to the
standard population and the cloned population to the doubled
population.

Figure 5: Graph of the Best Fitness (Top Line), Average
Fitness (Middle Line), and Standard Deviation (Bottom Line)

for the Two-Bit Adder Circuit with the (a) Standard
Implementation and (b) Cloned Implementation.

Cloning vs. Standard Population
This comparison is strictly measured based on the population
size. The graphs in Figures 5 (a) and (b) represent the growth
and behavior of the standard GA and the cloned GA
respectively for the two-bit adder implementation. The graphs
for the two-bit multiplier are similar to the above graphs, and
are not shown. The results at generation 10000 are listed in
Table 1 for both the adder and the multiplier.

Table 1: Table of the Average and Best Fitness at Gen.
10000 for the Standard and Cloned Population Runs.

Two-Bit Adder Average Best Std. Dev.

Standard (1) 29.52 45.04 5.06

Cloned (2) 29.41 45.20 5.17

Two-Bit Multiplier Average Best Std. Dev.

Standard (0) 42.54 59.96 7.63

Cloned (0) 42.78 59.72 7.41

At first glance, both of the populations performed equally well.
There is no significant different in the numbers. The standard
population realized one optimum individual and the cloned
population two. No optimum multiplier circuit was discovered
between the two implementations. The only major difference
between the two populations is the computational power
involved in reaching a solution. The applied cloning method did
not increase the efficiency of the GA.

Another interesting observation was the average fitness does not
exactly converge on a single value, yet, it converges on a
general fitness region. The average fitness remains within a
constant band after the growth period. After that initial growth
period, it seems the GA populations are not making an
improvement and have stabilized. To reach higher fitnesses, it
seems the GA has to essentially get lucky and stumble upon a
higher fit individual.

Cloning vs. Doubled Population
This comparison is measured based on computational time.
Cloning essentially represents a doubled population and is
therefore compared to that of a GA with a doubled population.
Figure 6 represents the behavior of the doubled population for
the two-bit adder implementation. The results at generation
10000 are listed in Table 2 for both the adder and the multiplier.

Again, the doubled population exhibited no significant
difference compared to the cloned population. The doubled
population was able to find a much larger number of optimum
solutions to the problem. This is perhaps due to the large range
of individuals in the population. This gives the population more
chances to get a lucky individual has increased its fitness.

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000

Generations

Fi
tn

es
s

Best Fitness Average Fitness Standard Deviation

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000

Generations

Fi
tn

es
s

Best Fitness Average Fitness Standard Deviation

(a)

(b)

Figure 6: Graph of the Best Fitness (Top Line), Average
Fitness (Middle Line), and Standard Deviation (Bottom Line)
for the Two-Bit Adder Circuit with the Doubled Population

Implementation.

Table 2: Table of the Average and Best Fitness at Gen.
10000 for the Doubled and Cloned Population Runs.

Two-Bit Adder Average Best Std. Dev.

Double (4) 29.30 46.28 5.32

Cloned (2) 29.41 45.20 5.17

Two-Bit Multiplier Average Best Std. Dev.

Double (4) 41.49 60.96 9.60

Cloned (0) 42.78 59.72 7.41

Discussion
Due to the deceptive nature of the problem, the genetic
algorithm is split into two sections, the growth section and the
stabilize section. The initial 200 generations is the growth
section used to mainly reach a convergent fitness (where the
growth of the individual tends to stabilize), while the remaining
9800 generations is the stabilize section used to attempt to reach
the optimum fitness. The nature of the problem makes it
difficult to compare the effect of cloning on the population.

Cloning divides the search space into two different, but possibly
very similar search areas. The better fitnessed population is
chosen over the other one in the case of cloning. The problem
has many cases where the truly better landscape section is
discarded. Cloning has increased chances of choosing a
population that would lead the GA close to the optimum fitness
during the run, but due to the nature of this problem and the fact
the GA has to essential get lucky and stumbles upon a better fit
individual, the GA does not perform exactly in this manner.
Instead the cloned population performs equally to that of the
standard GA. The cloning process does not have a visible
impact on the performance of the GA. Compared to the

computational power required by the cloned population, a
doubled population would be more suitable in this
implementation.

6. CONCLUSION

The applied cloning strategy is a new selection method for
genetic algorithms discussed in this paper. The goals of this
paper were to introduce this new method to the domain, and
show some initial testing data with the new method. The first
testing of applied cloning does not show significant increases on
GA performance. It does however show a minor increase in
convergence toward the optimum fitness. Cloning has its merits
with the improvement of genetic algorithms in this problem
domain. This study unlocked the difficult nature of the problem
domain, by illustrating how the problem reaches the many local
optimum points in the fitness landscape.

Because the problem is not an “easy” problem to solve, the
effects of cloning are not as noticeable as had earlier hoped. The
benefits of cloning appear to be not worth the computational
cost. This problem already requires a large amount of
computational power to execute, and instead of applying a
cloning method, an increase in population or generation could in
effect be more beneficial to this type of problem. There are
other problems that could potentially benefit from the applied
cloning strategy. These tests are only the initial tests performed
with this strategy; concrete conclusions cannot be made about
this method until further tests are conducted.

Contributions
There are two contributions made by this work in the fields of
genetic algorithms and evolvable hardware. The research put
forth considers a new approach to genetic algorithms and could
possibly lead to more effective means of optimizations. This
paper has the potential to introduce new approaches in the
evolvable hardware field, and lend itself to new perspectives on
different genetic algorithm implementation approaches to
common evolvable hardware problems.

7. FUTURE WORK

Because this strategy is new, it should be tested with standard
GA problems, for instance the max ones or the royal road
problem. By using a less complicated problem, and a more even
fitness landscape, perhaps the true potential of applied clone can
be discovered.

Cloning yields two identical populations and the genetic
operators to each of the cloned populations yielded different
unique populations. Yet, resultant populations remained fairly
similar through the use of conservative genetic operators
implemented in this paper. Future work could entail the addition
of more radical genetic operators to the cloned population,
adding more diversity to the separate populations, and allowing
the genetic algorithm to explore more regions of the search
space. Another method to lessen the disruptive effects of the
genetic operators is to use the conservative set of genetic
operators on one cloned population and the radical set on the
other.

0

5

10

15

20

25

30

35

40

45

50

0 2000 4000 6000 8000 10000

Generations

Fi
tn

es
s

Best Fitness Average Fitness Standard Deviation

8. REFERENCES

 [1] Brown, S., and Rose, J., “FPGA and CPLD Architectures:
A Tutorial”, IEEE Design & Test of Computers, pp. 42-57,
1996.

[2] Lohn, J., Larchev, G., and DeMara, R., “A Genetic
Representation for Evolutionary Fault Recovery in Virtex
FPGA’s”, The 5th International Conference on Evolvable
Systems: From Biology to Hardware, 2003.

[3] Keymeulen, D., Zebulum, R.S., Jin, Y., and Stoica, A.,
“Fault-Tolerant Evolvable Hardware Using Field-
Programmable Transistor Arrays”, IEEE Transactions on
Reliability, Vol. 49, No. 3, pp. 305-316, 2000.

[4] Miller, J.F., Thomson, P., Fogarty, T., “Designing Electronic
Circuits Using Evolutionary Algorithms. Arithmetic Circuits: A
Case Study”, Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science, 1998.

[5] Grefenstette, J. J., “Optimization of Control Parameters for
Genetic Algorithms”, IEEE Transactions on Systems, Man, and
Cybernetics, Vol 16, No. 1, pp. 122-128, 1986.

