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ABSTRACT 

In this paper,  we propose an efficient method 
based on genetic algorithms (GAs) to solve a 
sensor network optimization problem. Long 
communication distances between sensors and a 
sink (or destination) in a sensor network can 
greatly drain the energy of sensors and reduce the 
lifetime of a network. By clustering a sensor 
network into a number of independent clusters 
using a GA, we can greatly minimize the total 
communication distance, thus prolonging the 
network lifetime. Simulation results show that our 
algorithm can quickly find a good solution. This 
approach is also applicable to multiple network 
topologies (uniform or non-uniform) or shortest 
distance optimization problems . 

Keyword: Genetic algorithm, clustering, network 
optimization, shortest distance.  

1. INTRODUCTIONS 
Wireless sensor networks are developing quickly and 
have been widely used in both military and civillian 
applications such as target tracking, surveillance, and 
security management.  Since a sensor is a small, 
lightweight, un-tethered, battery-powered device, it has  
limited energy. Therefore, energy consumption is a 
critical issue in sensor networks. 

We are interested in  sensor networks in which a large 
number of sensors are deployed to achieve a given goal. 
All data obtained by member sensors must be transmitted 
to a sink or data collector. The longer  the communication 
distance, the more energy will be consumed during 
transmission. It is estimated that to transmit a k-bit 
message across a distance of d, the energy consumed can 
be represented  as follows: 

       E(k,d)=Eelec* k + Eamp*k*d2       [1] 

 where Eelec  is the radio energy dissipation and Eamp  is 
transmit amplifier energy dissipation. 

Figure 1 is an example of direct transmission where each 
sensor  transmits messages directly to the sink.   Direct 

 
    Figure 1:  An example of direct transmission  

 

transmission networks are very straightfoward to design 
but can be very power-consuming due to the long 
distances from sensors to the sink. Alternative designs 
that shorten or minimize the communication distances 
can extend network lifetimes. 

The use of clusters for transmitting data to a base station 
leverages the advantages of small transmit distances for 
most nodes, requiring only a few nodes to transmit far 
distances to the base station[1]. Clustering means to 
partition the network into a number of independent 
clusters, each of which has a cluster-head that collects 
data from all nodes within its cluster. These cluster-heads 
then compress the data and send it directly to the sink. 
Clustering can greatly reduce communication costs of 
most nodes because they only need to send data to the 
nearest cluster-head, rather than directly to a sink that 
may be further away. 

In this paper, we assume the sensor network is static. 
Sensors are deployed in a remote inhospitable 
environment and are far away from the sink which is 
usually positioned in a safe place.  All nodes are assumed 
to have the capabilities of a cluster-head and the ability to 
adjust their transmission power based on transmission 
distance. Each sensor’s position can be precisely 
measured by GPS (Global Position System) devices. 

Clustering a network to minimize the total distance is an 
NP-hard[2] problem. For a given network topology, it is 
difficult to find the optimal number of cluster-heads and 

mailto:sjin@ist.ucf.edu
mailto:zhouming88@yahoo.com
mailto:aswu@cs.ucf.edu


their locations. Consider a 100-node example, to perform 
an  exhausted search of all possible solutions requires  
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different combination which is far too large to be handled 
by  existing computer resources. 

A genetic algorithm is an efficient search algorithm that 
mimics the adaptive evolution process of natural systems. 
It has been successfully applied to many NP-hard 
problems such as multi-processor task scheduling, 
optimization, and traveling salesman problems. We 
propose to apply a GA to the problem of minimizing the 
total communication distance in a sensor network to 
efficiently reduce energy consumption and maximize the 
lifetime of the network.  

2. RELATED WORK 
This work is motivated by Heinzelman et al’s paper[1] 
“Energy-Efficient Communication Protocol for Wireless 
Micro-sensor Networks” which describes a clustering-
based protocol called LEACH. They compare the 
performance of LEACH  with direct communication and 
MTE. They use a pre-determined optimal number of 
clusters (5% of the total number of nodes) in their 
simulations. Heinzelman et al [3] determine that the 
optimal number of clusters for a 100-node network to be 
3-5 by using a computation and communication energy 
model; however, determining the optimal number of 
cluster-heads depends on several factors such as sensor 
densities, the position of a sink, etc. 
 
Tillett et al[4] propose the PSO (Particle Swarm 
Optimization)  approach to divide a sensor node field into 
groups of  equal sized groups of nodes. PSO is an 
evolutionary programming technique that mimics the 
interaction of ants or termites to find a good solution. 
Although partitioning into equal sized clusters balances 
the energy consumption of cluster heads, this method is 
not applicable to some networks where nodes are not 
evenly distributed.  

        Ostrosky et al[5] address a somewhat different 
partitioning problem: Given n points in a large data set,  
partition this data set into k ( k is known) disjoint clusters 
so as to minimize the total distance between all points 
and the cluster-heads to which they belong. The authors 
use a polynomial-time approximation scheme to solve the 
problem .     

         Agarwal, et al[6] present an approximation algorithm to 
solve a clustering problem called k-clustering.  This 
method separates the nodes in a workspace into k clusters 
where cluster membership is determined by a distance 
metric. As with the method proposed by Ostrosky et al, k-
clustering assumes a fixed number of clusters for 
optimization. 

        All of the above algorithms assume a fixed number of 
clusters.  We would like to solve a much harder problem 
where we do not know the number of clusters in advance.  
Our approach uses a GA to determine both the number 
and location of the cluster-heads that minimizes the 
communication distance in a sensor network.   

3. PROPOSED GA SOLUTION 
        We would like to use a GA to optimize the number of 

clusters and sensor connections for an arbitrary network. 
Once cluster-heads are selected, each regular node 
connects to its nearest cluster-head. Each node in a 
network is either a cluster-head or a “member“ of a 
cluster-head. Each regular node can only belong to one 
cluster-head. Each cluster-head collects data from all 
sensors within its cluster and each head directly sends the 
collected data to the sink. Figure 2 shows an example of 
clustering. 

 

 
Figure 2:  Clustering example 

 

         3.1 Problem  Representation  
Finding appropriate cluster-heads is critically important 
to minimizing the distance.  We use binary representation 
in which each bit corresponds to one sensor or node.  A 
“1“ means that corresponding sensor is a cluster-head; 
otherwise, it is a regular node.  In the following example 
individual,          

                  s1  s2  s3  s4  s5  s6  s7  s8  s9 

                  1    0   0    1    0    0   1   0    0  

nodes s1, s4 and s7 are cluster-heads. The remaining 
nodes are regular nodes.  The initial population consists 
of randomly generated  individuals. GA is used to select 
cluster-heads. Each regular node uses a deterministic 
method to find its nearest cluster-head.   
3.2 GA Operators 
Crossover and mutation provide exploration, compared 
with the exploitation provided by selection. The 
effectiveness of GA depends on the trade-off between  
 
 

   
 



exploitation and exploration. 
 
         Crossover: In this paper, we use one-point 
crossover. The crossover operation takes place between 
two consecutive individuals with probability specified by 
crossover rate. These two individuals exchange portions  
that are separated by the crossover point The following is 
an example of crossover: 

 Indv1:  1  1  1  0   0  1  0  1   

 Indv2:  1  0  1  1   1  1  1  0   

               Crossover point 
After crossover, two offspring are created as below: 

              Child1:  1  1  1  0  1  1  1   0   

              Child2:  1  0  1  1  0  1  0   1 

If a regular node becomes a cluster-head after crossover, 
all other regular nodes should check if they are nearer to 
this new cluster-head. If so, they switch their membership 
to this new head. This new head is detached from its 
previous head. If a cluster-head becomes a regular node, 
all of its members must find new cluster-heads. Every 
node is either a cluster-head or a member of a cluster-
head in the network. 

 
         Mutation: The mutation operator is applied to each 
bit of an individual with a probability of mutation rate. 
When applied, a bit whose value is 0 is mutated into 1 
and vice versa.  An example of mutation is as follows. 

Indv:   1   1   1   1   1   1   0 

Indv:   1   1   1   0   1   1   1   

3.3 Selection 
The selection process chooses the candidate individuals 
based on their fitnesses from the population in the current 
generation. Proportional selection (or roulette wheel 
selection) is used in this algorithm.  It is implemented by 
using a biased roulette wheel, where each individual is 
assigned a slot, the size of which is proportional to the 
fitness value. Those individuals with higher fitness values 
are more likely to be selected as the individuals of 
population in the next generation.  
 

3.4  Fitness Evaluation 
The total transmission distance is the main factor we need 
to minimize. In addition, the number of cluster heads can 
factor into the function. Given the same distance,   fewer 
cluster heads result in greater energy efficiency as cluster 
heads drain more power than non-cluster-heads. Thus, 
each individual is evaluated by the following combined 
fitness components: 

          Fitness =  w* (D-distancei ) + (1-w)* (N– Hi) 
 

where    D  is the total distance of all nodes to the sink; 
Distancei is the sum of the distances from  regular nodes 
to clusterheads plus the sum of the distances from all 
clusterheads  to the sink; Hi  is the  number of cluster-
heads; N is the total number of nodes; and w  is a pre-
defined weight. Except for distancei and Hi, all other 
parameters are fixed values in a given topology.  The 
shorter the distance, or the lower the number of cluster-
heads, the higher the fitness value of an individual is. Our 
GA tries to maximize the fitness value to find a good 
solution. 
The value of w (0≤w≤1) is application-dependent. It 
indicates which factor is more important to be 
considered: distance or the cost incurred by cluster-heads. 
At one extreme, if w=1,  we optimize the network only 
based on the communication distance. If w=0, only the 
number of cluster heads is considered.   

 

3.5 Scaling Window 
 
When fitness values are similar, it can be difficult for a 
GA to distinguish better individuals from slightly worse 
individuals. This reduces the selection pressure toward 
the better structures, and the search stagnates[7]. In order 
to increase the probability of selecting the better 
individuals, we scale the fitness value of each individual 
by subtracting the minimum fitness value in each 
generation. Thus, the new fitness value fit(i)=Fit(i)-Fitmin.   

Figure 3 is an example of  proportional distribution 
before and after scaling.   

       Fit(1)=1020 (32.80%)                fit(1)= 0  (0.00%) 

       Fit(2)=1040  (33.44%)              fit(2)=20 (40.0%) 

       Fit(3)=1050  (33.76%)              fit(3)=30 (60.0%) 

 

 

 

 

 

 

Figure 3:Proportional distribution before and after scaling. 

 

After scaling, individual 3 has a higher probability to be 
selected as a candidate individual of the next generation. 

 

4. EXPERIMENTAL  RESULTS 
In our experiment, we randomly generate 100 nodes in a 
simulated 2-D environment and use two different sink 
positions (0,0) and (200,200). The following GA 
parameter settings are used throughout the experiments: 

   
 



Population size: 80 

Selection type: Proportional selection 

Crossover rate: 0.70 

Crossover type: one-point 

Mutation rate:  0.006 

Generation size: 800 

4.1 Clustering Results 

Figure 4 shows an example clustering result when the 
sink is located at (0,0), the upper left corner, and w is set 
1.0; that is, we only consider the distance in our fitness 
function.  

            

          Figure 4: Clustering result with sink at (0,0) 

 

         Figure 5: Clustering result with sink at (200,200) 

         

 

Figure 5 shows an example output when the sink is   
located at (200,200) and w is set 0.8.  

Figure 6 shows an example output when w is set to 0, i.e. 
the number of cluster-heads is only considered in our 
fitness function. Although this is not realistic in our 
problem, it verifies the effectiveness of our algorithm 
because, as expected, the optimal number of heads is 1. 

 

Figure 6: Clustering result with w = 0. 

 

   

4.2 Changes of Fitness, Distance and Head over 
Generations 
 

Figures 7, 8, and 9 reflect the changes in the maximum 
fitness, the minimum distance and the number of heads, 
respectively, for an example run.            

 
         Figure 7: Maximum fitness over generations 

       

   
 



    
         Figure 8:  Minimum distances over generations 

 

    

 
      Figure 9: Cluster-head changes over generations  

   

Experimental results show that our algorithm is efficient 
and adaptive to multiple network topologies. 

(1) This approach can quickly find solutions. For a 100-
node problem, a good solution can be achieved after only 
120 generations. Experiments indicate that the scaling 
window plays an important role in the quality of the 
solution found. 

(2) When a single node is near to the sink , that node 
itself becomes a cluster-head and sends data directly to 
the sink. Experiments also show that nodes near to the 
sink are more likely become cluster-heads than those far 
away. 

(3) More cluster-heads are needed when a sink is close to 
the center of a network than when it is located at a 
network corner. This observation is expected because 
when the sink is at the center, all regular nodes are 
located around the sink.  As a result, cluster-heads tend to 
be distributed around the sink. 

(4) In a densely-deployed region, a middle node is 
generally elected as cluster-head.  Figure 4 and figure 5 
clearly show this.  

(5)  No two cluster-heads are near to each other.  The GA 
is likely to merge two nearby cluster-heads into one head 
to eliminate essentially duplicated communication 
distances. 

 

4.3 Scalability 
It is common to deploy hundreds of nodes in a sensor 
network if sensors are low in cost. As a result, it is very 
important to test the scalability of this algorithm, i.e., we 
want to test  this when the number of nodes increases. We 
increase the number of nodes from 100, 200, to 400. 
Table 1 illustrates some initial test results when the sink 
is at (0,0).   

          Table 1:  Test Results of Three Problem Size 

  Node

Size  

 
Population

Converge 
after 

generation  

Head   
(%) 

Distance 
decreased 

 100     80                  105        10.0%    76.85% 

 200     160        120 10.0%    81.20% 

 400     300        145 11.2%    82.20% 

 

As the number of nodes doubles, it is necessary to double 
the population size to maintain comparable performance. 
The number of cluster-heads is about 10.0% of the total 
number of nodes. This percentage may vary if nodes are 
unevenly distributed. On average, distance is reduced by 
80% as compared with the distance of direct transmission. 
This percentage increases slightly as node count increases 
because the larger the number of nodes and denser node 
distribution results in more  efficient  cluster optimization.  

As expected, in an application where nodes are densely 
distributed, reducing the number of heads  tends to 
increase the solution quality significantly. 

5. CONCLUSIONS AND FUTURE WORK 
In this paper, we propose a GA-based method to 
minimize communication distance in sensor networks via 
clustering. Our algorithm begins by randomly selecting 
nodes in a network to be cluster-heads. By adjusting 
cluster-heads based on fitness function, our algorithm is 
able to find an appropriate number of cluster-heads and 
their locations. Simulation results show that our approach 
is an efficient and effective method for solving this 
problem. First, it is able to quickly find good solutions. 
Second, this  algorithm is applicable to both uniform and 
non-uniform network topologies.  

Our future work will focus on the comparison of  our 
algorithm with others such as simulated annealing, Tabu 
search or other mathematical methods in terms of quality 

   
 



and time-complexity. In addition, this network 
optimization problem can also be extended to a 
hierarchical structure  where a cluster-head can have a 
super cluster-head which sends data directly to the sink.  

We believe this method can be scalable to larger 
problems and we plan to perform comprehensive tests to 
understand the impact of  GA parameters. 

Applications of this approach can also be extended to 
other  areas such as shortest distance optimization or base 
station construction where it is a challenging issue to 
determine the minimum number of base stations required 
to meet optimal radio transmission coverage while 
minimizing overall construction costs.       
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