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Abstract. Designing optimal teams of sensors to detect the enemy
radars for military operations is a challenging design problem. Many
applications require the need to manage sensor resources. There is a
tradeoff between the need to decrease the cost and to increase the capa-
bilities of a sensor suite. In this paper, we address this design problem
using genetic algorithms. We attempt to evolve the characteristics, size,
and arrangement of a team of sensors, focusing on minimizing the size
of sensor suite while maximizing its detection capabilities. The genetic
algorithm we have developed has produced promising results for different
environmental configurations as well as varying sensor resources.

1 Introduction

The problem of determining an optimal team of cooperating sensors for mili-
tary operations is a challenging design problem. Tactical improvements along
with increased sensor types and abilities have driven the need for automated
sensor allocation and management systems. Such systems can provide valuable
input to human operators in terms of exploring and offering candidate solutions,
providing a testbed on which to evaluate candidate solutions, and providing a
penalty-free environment on which to test for severe failure conditions.

Given a possible configuration of enemy radars, our goal is to find a team of
sensors that can sense as many enemy radar as possible. Sensors are available in a
wide range of capabilities and costs and the number of sensors in a team can vary.
The importance of a mission may restrict the types and numbers of available
sensors as well as the maximum cost. There is a tradeoff between the need to
maximize the sensing capability of a sensor suite and the desire to minimize cost.

The open-endedness of this problem makes it an interesting design problem.
The number of potential components (sensor type, characteristics, and place-
ment) that make up a solution is extremely large. There are very few restric-
tions as well as very little guidance as to how many and what types of these
components would make up a good solution.
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We use a genetic algorithm (GA) to tackle this problem of designing optimal
sensor suites. We have developed a GA that will generate candidate sensor suites
that are evaluated using a simulator based on military specification. In this
paper, we describe experiments which explore the performance of our GA in
different types of enemy environments using different types of sensor resources.
Our experimental results indicate that such a GA approach is able to design
reasonable and effective sensor suites.

2 Related Work

Evolutionary Algorithms have been used to generate optimal designs effectively.
Peter Bentley’s [1] pioneering work in evolutionary design incorporated evolu-
tionary computation techniques to into the evolution of design components that
would build wide range of solid objects such as tables, prisms, cars. The sys-
tem takes the input specifications for the object to be designed and evolves the
shape of the design that performs the required function. Funes et al. [2] apply
evolutionary techniques to the design of structures in a simulation environment
that are then buildable from parts using Lego parts. Instead of using expert
engineering knowledge, they use a fitness function to evaluate the feasibility
and functionality of evolved structures. Husbands et al. [3] report the results
of a comparative study of ten different optimization techniques in structural
design optimization. The distributed Genetic Algorithm (DGA) and various hy-
brid methods (DGA with gradient descent, Simulated Annealing with gradient
descent) appear to have significant advantages over the other techniques tested.
Lee et. al. [4] develop a hybrid approach to evolve both controllers and robot
bodies for performing specific tasks. They evolve physical body parameters such
as the number and location of sensors and show that the design of robot body
considerably can affect the behavior of the system.

Bugajska et al. [5] investigate the co-evolution of form and function for au-
tonomous agents. The form component in [5] focuses on the characteristics of the
sensor suite. All sensors within a sensor suite are assumed to be have same the
characteristics. Characteristics that can be evolved are the number of the sen-
sors in a sensor suite and the sensor coverage area of each sensor. The maximum
number of sensors is limited to 32 and the detection angle varies from 5 to 30 de-
grees. The location of the sensors are fixed and the coverage degradation by the
distance is not taken into consideration. In [6], Bugajska et al. added the detec-
tion angle and the placement of the sensor to the list of evolved characteristics.
They assume that power efficiency degrades with increased sensor coverage area.
They evolve the number of the sensors implicitly by allowing a zero detection
angle to indicate the existence of no sensor. The maximum number of sensors
is limited to nine. The sensor detection angle can range from 0 to 45 degrees.
In our work, detection angle can vary from 0 to 359 degrees and the placement
of the sensors is not limited to fixed locations. The evolvable characteristics of
our sensors are location, detection coverage, power and the frequency band the
sensor operate at.



Evolving Sensor Suites 3
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Fig. 1. (a) Example problem environment; (b) Problem environment with candidate
solution.

The sensor management problem has been investigated by researchers using
non-evolutionary techniques as well. Gaskell et al. [7] use a decision theoretic
approach to develop a sensor management system for mobile robots. Popoli [8]
proposes a sensor management scheme that uses fuzzy set theory, knowledge-
based reasoning and expert systems. Schmaedeke et al. [9] uses an information
theoretic approach for sensor to target assignment optimization. We believe the
evolutionary technique and the advances in our work will have an advantage in
terms of being robust and easily transferable between different problem scenarios
with a little or no modification to the system.

3 Problem Environment

Before looking at the details of our GA implementation, it is necessary to under-
stand the problem to which we apply the GA. The problem environment consists
of a collection of stationary enemy radars located in a two-dimensional plane.
Figure 1(a) shows an example environment consisting of twelve randomly placed
enemy radar. Radar are represented as points surrounded by gradually fading
circles. The environment is restricted to two dimensions in our current work but
can easily be extended to three dimensions in the future.

The location, power, and frequencies of the enemy radar are configured be-
forehand and remain static throughout a run. Each radar can operate on one of
four different frequencies: A, B, C, or D. A radar can only be detected by sensors
that are configured to sense on the same frequency. A radar must be detected
by at least three difference sensors to be fully detected. (Three measurements
are necessary for accurate triangulation of position.) Radars that are detected
by two sensors are partially detected and radars that are detected by one sensor
are minimally detected. Partially and minimally detected radar contribute less
to the fitness evaluation than fully detected radar. In the experiments described
here, we set all radar to operate on a single frequency in order to test the GA’s
ability to evolve miminal cost teams.
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Fig. 2. (a) Problem representation for the evolvable team of sensors; (b) Sensor char-
acteristics, o = Detection angle range and #= Direction angle

Figure 1(b) shows the same environment along with a candidate solution.
The pie shapes elements indicate sensors and their detection angle and range.
Lines indicate detection of a radar by a sensor.

4 GA Design

4.1 Problem Representation

Each individual in a GA population specifies the composition and arrangement
of a team of sensors encoded as a vector of genes. Each gene encodes the evolvable
characteristics for a single sensor. Figure 2(a) shows an example individual which
represents a solution that is a team of N sensors. Example parameter values
for Sensor 2 are shown in detail. As the optimal number of sensors may not
be known in advance, we allow the GA to evolve variable length individuals.
Initially, each individual contains 20 randomly configured sensors. The maximum
possible length of an individual is 100, indicating a maximum team size of 100
Sensors.

The location of each sensor is encoded as x and y coordinate values. Sensors
can be active or inactive. If multiple sensors in an individual have the same
location in the environment, only the sensor that appears first in the individual
(the leftmost sensor) is active. The others are inactive and are unable to detect
any radars; however, they are still included in the cost component of the fitness
function.

Figure 2(b) illustrates the direction angle and the detection angle range. The
direction angle indicates the “front” of a sensor and is a counter-clockwise angle
relative to the 3 o’clock position. The detection angle range is centered around
the direction angle and indicates the range within which a sensor can detect
signals. Suppose that we have a square environment with a radar in each corner
and a sensor located in the center of the square. If the sensor has a direction
angle of 45 degrees and a detection angle range of 90 degrees. This sensor would
point to the upper right corner of the square and would be able to detect only
within the upper right quadrant of the environment. This particular sensor is
only capable of detecting the radar located in the upper right corner of the
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environment, as long as other requirements such as frequency and power are
satisfied.

The minimum power threshold for each sensor indicates the minimum power
value that a sensor must receive from an enemy radar in order for detection
to occur. A sensor is initially randomly configured with a minimum threshold
power for radar detection. The power a sensor receives from a radar is inversely
proportional to the distance between the sensor and the radar. The received
power is also proportional to the base power of each enemy radar. Thus, p = r/d,
where p is the power received by a sensor, r is the enemy radar power, and d is
the distance between the sensor and the enemy radar. Only the power received
by sensor is greater than the minimum threshold for that sensor can it detect
a radar. The minimum threshold value that can be evolved is configurable as
a system parameter which enables us to vary the covereage capabilities of the
sensors that can be generated within a GA run.

Each sensor can detect radar frequencies in zero to four bands (as represented
by A, B, C, and D in section refsec.prob). Detection is represented by a four bit
binary string in each gene. Each bit refers to one radar band. A 1 denotes the
ability to detect the radar frequency represented by that bit and a 0 indicates
inability to detect the corresponding radar frequency. Sensors are capable of
detecting on more than one band. A sensor can detect a radar only if it operates
on the same radar frequency as the radar.

4.2 Fitness Evaluation

The fitness function consists of two parts, detection capability and the total cost
of the solution. The fitness function is:

f=r/o, (1)

where f is the raw fitness, p is the detection fitness that indicates the detection
capability, and o is the total cost of a solution. To calculate p, the detection
fitness, we count the number of radars that are fully, partially, and minimally
detected. The detection fitness is:

_3*F+2*P+M
= 7 ,

(2)

where R is the number of enemy radars and F, P, M are the numbers of fully,
partially and minimally detected radars, respectively.

The raw fitness is inversely proportional to the total solution cost. The total
cost of a solution is its basic cost plus the total cost of all of the sensors:

n

c=b+Y(p+0) (3)

i=1

where b is the fixed basic cost of deployment, p is the fixed basic cost of each
sensor, n is the total number of sensors and ¢ is the cost due to the band
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Fig. 3. Inter-gene level crossover operation

frequencies that are equipped in each sensor. The cost of radar bands favors
multi-band sensors in that it is cheaper to have a sensor with four bands than to
have two sensors with two bands each. The costs given to a sensor according to
the number of bands it has are 1, 3, 5, 7 and 9 for zero, one, two, three and four
bands respectively. Two 2-band sensors would cost 10 while one 4-band sensor
would cost 9, thus, favoring multi-band sensors.

4.3 Selection and Genetic Operators

The selection method we use is tournament selection with size two. One-point
crossover operator is applied to variable length individuals where the crossover
point on each parent is chosen independently. The length of an offspring may be
different from its parents. Crossover points always fall in between the genes as
shown in Figure 3.

We use a mutation scheme that is different from traditional mutation. Muta-
tion is done on the intra-gene level. Each characteristic of each gene is subject to
the mutation rate. If frequency band is to be mutated, we randomly generate a
value (0 or 1) for the mutated bit. If the location, direction angle, detection angle
range, or minimum threshold power are to be mutated, a Poisson distribution
function is used to generate a value as an offset from the original value. That is,
the new value is not randomly selected from a specified range, but rather follows
a distribution probability. We use this mutation scheme to encourage accurate
adjustment on the location, detection angle, angle range and power of the sen-
sors as random mutation does not help to fine tune the value and improve the
detection performance in a long run.

5 Experiments

The goal of our experiments is to demonstrate that a GA is capable of designing
teams of sensors for the detection of the enemy radars in a reasonable amount
of time. We test our GA on a variety of environmental scenarios and sensor
configurations to study the robustness of the system with respect to the inputs
for the environmental conditions.
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5.1 Test Sets
The two environmental scenarios we test are :

— Radars organized in a 5 x 5 grid pattern totaling up to 25 radars. We ex-
pect a GA to evolve a relatively distributed placement of sensors in this
environment. Placing sensors within the area covered by radars is expected
to be most efficient; however, the rightmost column and the bottom row of
the environment are left empty to see if the GA places sensors outside the
perimeter of the radars.

— Radars clustered at random locations, 12 radars in three clusters. We expect
sensors to be clustered near radar clusters. The locations that have no enemy
radars are expected to have no sensors.

The two general types of sensors we test are:

— Long range sensors that are able to cover the entire environment. As any sen-
sor should be able to detect all radars, we expect the GA to evolve solutions
that are close to three sensors, the minimum number of sensors required to
fully detect a radar.

— Short range sensors that cover less than a quarter of the environment. We
expect solutions to consist of more sensors as short range sensors cannot
sense the entire environment.

Using the test cases explained above, we test four different scenarios for in our
experiments:

1. Long range sensors with radars placed evenly in a grid pattern.
2. Longe range sensors with radars placed randomly in three clusters
3. Short range sensors with radars placed evenly in a grid pattern.
4. Short range sensors with radars placed randomly in three clusters

All of the enemy radars are set to operate on a single band (A). The GA param-
eter settings we have used throughout all the scenarios are:

Population size : 200, initialized randomly
Initial length : 20

Parent Selection : Tournament, size:2
Crossover type : one-point

Crossover rate : 0.7

Mutation rate : 0.01 (per gene)

Max number of generations : 400

Number of runs : 100

5.2 Test Results

Figure 4 shows an example solution from our first scenario. In this experiment,
sensors are able to extend their coverage area to include the whole environment.
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Fig. 4. Long range sensors with enemy radars located in a grid for a single run
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Fig. 5. Length and percentage of detection averaged over 100 runs for long range
sensors and grid placement scheme for enemy radars

We observe that the GA is able to evolve a team of four sensors which is close
the minimum requirement of three to fully detect all enemy radars. There are no
undetected radars. 24 out of 25 enemy radars are fully detected . Only one enemy
radar located at the top right corner is detected by two sensors. The results we
obtain over 100 runs are consistent with the example solution. Figure 5 shows
the evolution of individual length, i.e. number of sensors evolved, and percentage
of radar detection averaged over 100 runs. The number of sensors evolved in the
best individuals levels off around four, and the percentage of radar detection in
best individual is always higher than 80%. The second scenario uses long range
sensors in a clustered environment. Our best solutions are again teams of four
sensors as shown in Figure 6. All radar except for one are fully detected; the
remaining is partially detected. The average behavior of the GA over 100 runs
as shown in Figure 7 is similar to that shown in Figure 5 suggesting that the
behavior of this GA, in terms of the number of evolved sensors and the percentage
of detection, is independent of the placement of the enemy radars. This result is
expected as long range sensors should have the same capability regardless of the
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Fig. 6. Long range sensors with enemy radars located randomly in 3 clusters for a
single run
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Fig. 7. Length and percentage of detection averaged over 100 runs for long range
sensors and cluster placement scheme for enemy radars

enemy radar configuration. In general, sensors tend to cluster around the center
of the environment in order to most efficiently detect all radars.

The third scenario employs sensors that can sense a maximum of one quarter
of the environment. Given the distributed radar and assuming the need for at
least three sensors for each quarter of the environment, we anticipate solutions
to contain a minimum of twelve sensors. The GA is able to evolve a team of
fourteen sensors as shown in the example solution in Figure 8. All enemy radars
are detected by at least one sensor. The fourth scenario employs short range
sensors in a clustered environment. We expect each cluster to require at least
three sensors for full detection. Figure 10 shows that the GA is successful at
evolving a minimum number of sensors of nine. There are no undetected radar.
The number of radars detected by one, two and three sensors are one, seven and
four respectively. Because of their decreased range capacity, all of the sensors
can only detect radars within the one of the clusters.

We explored additional varying sensor ranges and include an example solution
using medium range sensors which can potentially cover approximately 75% of



10 Ayse S. Yilmaz et al.

X Best overall

[EIEm|

GCeneration
Genome length:
Active Pucks:
Fitness

Bvg Fitness:
Standard devlation:
Cost:

Avg Cost;
Standard devlation:
# radar:

# radar detected

469
15

14
0.02568
0.01585
0.0034
a5.0
111.52
31.055
25

25

Fig. 8. Short range sensors with enemy radars located in a grid for a single run
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Fig. 9. Length and percentage of detection averaged over 100 runs for short range
sensors and grid placement scheme for enemy radars

the working environment. This solution, shown in Figure 11, includes sensors that
are mainly focused within clusters, with a few that are able to reach multiple
clusters.

The results we obtain over 100 runs are also consistent with the single run
results. The individual length, i.e. the number of sensors evolved and the per-
centage of detection averaged over 100 runs are reported in Figure 9 and Figure
12, for grid and the clustered placement of the enemy radars respectively. GA
is able to detect the enemy radars with same performance for both placement
scheme with a detection percentage around 90%. However the number of sensors
evolved in best individuals levels off around sixteen for grid placement while it’s
near fourteen for the clustered placement which makes short range sensors more
sensitive to the changes in the environment than the long range sensors. Due
to limited capability of the sensors, we observe a considerable increase in the
number of sensors evolved compared to the scenarios with long range sensors.
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Fig. 10. Short range sensors with enemy radars located randomly in 3 clusters
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Fig. 11. Medium range sensors with enemy radars located randomly in 3 clusters

6 Conclusion

In this study, we examine the problem of designing teams of sensors to detect
enemy radars located in different configurations. We extend the basic GA design
to enable evolving as much sensor characteristics as possible. Based on the de-
tection criteria we have, the results we obtain are promising. Our GA is able to
evolve close to the optimal number of sensors based on the capabilities of the sen-
sors. Our system is demonstrated to be robust to the changes in the placement
of the enemy radars. The detection percentage is around 90% with the limited
sensing capability of the sensors and around 100% with the sensors that have full
coverage capability independent from the enemy radar placement.Future goals
include testing the robustness and the performance of our GA on more realistic
scenarios such as ones with moving radars . In addition we plan to investigate the
adaptibility of our system to changing environments, to introduce more problem
specific genetic operators and to investigate the identification of the building
blocks that form effective subteams.
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References

. Bentley, P.J.: Generic evolutionary design of solid objects using a genetic algorithm.

In: Ph.D. thesis, Division of Computing and Control Systems, School of Engineering,
University of Huddersfield. (1996)

Funes, P., Pollack, J.: Computer evolution of buildable objects. In: Proceedings of
fourth European Conference on Al (1997)

Husbands, P., Jermy, G., Mcllhagga, M., Ives, R.: Two applications of genetic
algorithms to component design. In: Workshop on EC. (1996)

Lee, W., Hallam, J., Lund, H.: A hybrid gp/ga approach for co-evolving controllers
and robot bodies to achieve fitness-specified tasks. In: Proceedings of IEEE third
International Conference on Evolutionary Computation. (1996)

. Bugajska, M., Schultz, A.: Co-evolution of form and function in the design of

autonomous agents: Micro air vehicle project. In: GECCO-2000 Workshop on Evo-
lution of Sensors in Nature, Hardware and Simulation, Las Vegas, NV (2000)
Bugajska, M., Schultz, A.: Co-evolution of form and function in the design of micro
air vehicles. In: NASA /DoD Conference on Evolvable HW. (2002)

Gaskell, A., Probert, P.: Sensor models and a framework for sensor management.
In: Sensor Fusion VI. Proceedings of SPIE. Volume 2059. (1993)

Popoli, R.: The sensor management imperative. In: Chapter in Multitarget-
Multisensor Tracking: Applications and Advances. Volume II., Artech House Pub-
lishers (1992)

Schmaedeke, W., Kastella, K.: Information based sensor management and immkf.
In: Signal and data processing of small targets 1998: proceedings of the SPIE. Vol-
ume 3373., Orlando, FL (1998)



