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Abstract. In this paper, we examine the behavior of a variable length
GA in a nonstationary problem environment. Results indicate that a
variable length GA is better able to adapt to changes than a fixed length
GA. Closer examination of the evolutionary dynamics reveals that a
variable length GA can in fact take advantage of its variable length
representation to exploit good quality building blocks after a change in
the problem environment.

1 Introduction

A typical genetic algorithm (GA) tends to use problem representations that are
orderly, fixed, and somewhat arbitrary. Individuals are of a fixed length with
information encoded at fixed, programmer-defined locations on the individuals.
These representations tend to be very efficient, well organized, and encoded in
ways that are very logical or easy for humans to interpret. Extending a GA to use
a variable length problem representation brings about a host of new issues that
must be addressed, including how to encode information and modifications to
traditional genetic operators. Nevertheless, the advantages of a more adaptable
and evolvable problem representation are thought to outweigh the additional
effort.

In this paper, we explore the adaptability of a variable length representation
in a nonstationary environment. Previous work has suggested that in periods of
heavy search, e.g. those periods immediately following a change in the environ-
ment or target solution, a variable length GA will tend to favor longer individuals
because longer individuals provide more resources to the search process [1, 2]. We
test this theory on a variable length GA applied to the problem of multiprocessor
task scheduling [3]. Although our initial results are somewhat surprising, a de-
tailed analysis of the evolutionary dynamics provide an interesting and positive
explanation.

2 Related work

Early work on variable length representations includes Smith’s LS-1 learning
system [4], Goldberg’s messy GA [5], Koza’s genetic programming (GP) [6],
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and Harvey’s SAGA [7]. These studies laid much of the groundwork in terms of
defining the issues that need to be addressed with variable length representations
and exploring potential solutions.

Since then, much research has been conducted on the variation of individual
length during evolution. Langdon and Poli [2] explore the cause of bloat in the
variable length genetic programming (GP) representation. They conclude that
longer individuals are favored in the selection process because they have more
ways to encode solutions than shorter individuals. Soule et al. [8,9] perform a
detailed investigation on code growth in GP and conclude that code growth is
dominated by non-functional code. As a result, parsimony pressure can affect the
search quality in GP. The relationship between size and fitness in a population
is useful in predicting the GP’s search performance in a long run. Burke et al. [1]
study the adaptation of length in a variable length GA. They found that, with-
out parsimony pressure, a GA tends to generate individuals of arbitrary length.
If parsimony pressure is applied, the average individual length increases quickly
in early evolution, followed by a gradual decrease until stablization. The early
increase was thought to be a period of growth of resources: increasing individ-
ual length increases the probability of finding building blocks. All of the above
studies examine variable length representation in a stable problem environment.

A variety of studies have looked at GA behavior in changing environments.
Some of these approaches focus on maintaining the population diversity dur-
ing GA search, such as the use of random immigrants [10], hypermutation [11],
adaptive GA operators [12], and the TDGA [13, 14]. Other strategies attempt to
improve the search by storing duplicate information with redundant representa-
tion schemes [15-17], using alternative memory systems [18], or encouraging the
maintenance of multiple “species” within a GA population [19-21].

3 Problem description

We perform our experiments on a variable length GA applied to the problem
of multiprocessor task scheduling [22]. The task scheduling problem begins with
a task dependency graph which specifies the dependencies among a number of
tasks that together compose a larger complete task. Figure 1 shows two example
task dependency graphs. The goal of the GA is to assign tasks to a set of available
parallel processors such that all tasks can be completed and total execution time
is minimized. The data dependencies that exist among tasks place restrictions
on the order in which tasks can be assigned to processors. Dependent tasks that
are assigned to different processors may incur additional communication delays.

4 Implementation details

Our GA is based on a traditional generational GA, but extended to use a flexible
variable length representation. Our extensions beyond a basic GA are described
below along with the fitness function.
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Fig. 1. Task dependency graph for problems G1 (left) and G2 (right).

(3,0)(1,3)(2,2)(1,2) (3,0) (4,3) (5,2) (0,00 (2,1)

Fig. 2. An example individual.

4.1 Variable length problem representation

Each individual in the population consists of a vector of cells or genes. A cell is
defined as a task-processor pair, (¢, p), which indicates that a task ¢ is assigned to
processor p. The number of cells in an individual may be fixed or may vary during
evolution. The order of the cells of an individual determines the order in which
tasks are assigned to processors: cells are read from left to right and tasks are
assigned to corresponding processors as long as the same task is not assigned to
the same processor twice. If the same task-processor pair appears multiple times
in an individual, only the first cell contributes to the fitness evaluation. Any
additional identical cells are ignored by the fitness function but still subject to
action by genetic operations. The same task may be assigned multiple processors.
In variable length evolution, the number of cells in an individual is limited to ten
times the number of tasks in the problem. Figure 2 shows an example individual.
Figure 3 shows the corresponding task assignment.

4.2 Modified genetic operators

Crossover is performed on the cell level and crossover points are restricted to
falling only in between cells. In variable length runs, we use random one-point
crossover which randomly selects one crossover point from each parent and ex-
changes the segments to the left of crossover points to form two offsprings. As
a result, the length of offsprings may be different from their parents. In fixed
length runs, we use simple one point crossover.
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|Processor 0|Task 3|Task 0|
[Processor 1|Task 2]

[Processor 2|Task 2|Task 1[Task 5
[Processor 3|Task 1|Task 4]

Fig. 3. Assignment of tasks from individual in figure 2.

Each cell has equal probability to take part in mutation. If a cell is selected
to be mutated, then either the task number or the processor number of that cell
will be randomly changed.

4.3 Fitness function

The fitness function is a weighted sum of two components, the task_fitness and
the processor_fitness:

fitness = (1 — b) x task_fitness + b * processor_fitness.

The value of b ranges from 0.0 to 1.0.

The task_fitness evaluates whether tasks have been scheduled in valid or-
ders and whether all tasks have been included in a solution. Calculation of
task_fitness consists of three steps.

1. We use an incremental function to check the relative order of the task as-
signments. Suppose that the problem involves P processors and 7' tasks.
Our GA evolution occurs in eras, era = 0, 1, 2, ... , T. Initially, era is set to
zero. For all tasks assigned to the same processor, we check the sequence of
every pair of adjacent tasks. A raw_fitness is calculated with the following
equation:

number of valid task groups in an assignment
total number of task groups in an assignment.

row _fitness = (1)

The era counter increases when the average population fitness exceeds a user
defined threshold value and a fixed percentage of the population consist of
valid individuals. A valid individual is one which encodes a valid assignment,
containing at least one copy of every task. Each time the era is increased, we
increase the number of tasks in the sequences checked to obtain Equation 1.
Thus, the length of the sequences checked equals era + 2.
The size of the search space makes random generation of valid solutions
unlikely. The goal of the era component is to provide a way for the GA
to reward for partial solutions of increasing difficulty as a run progresses,
eventually focusing only on full solutions.

2. We check the number of distinct tasks appearing in a solution. The task_ratio
is calculated with the following equation:

number of distinct tasks specified on an individual
total number of tasks in the problem.

task_ratio =

(2)
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Parameter Value

Population size 200

Number of generations 1500

Crossover type random one-point
Crossover rate 1.0

Mutation rate 0.005

Selection scheme Tournament (2)
b 0.2

Fitness threshold 0.75

Table 1. Parameter settings used in our experiments.

3. Finally, task_fitness = raw_fitness x task_ration.

The processor_fitness evaluates the execution time of a valid task schedule,
favoring schedules that minimize execution time.

. P x serial_len — t
processor_fitness =

P x serial_len

where P is the number of processors in the problem, ¢ is the execution time of a
solution, and serial_len is the execution time of all the tasks if they are assigned
serially to a single processor.

Additional details regarding the fitness function are available in [3].

4.4 System parameter settings

Table 1 gives the default parameter settings used in our experiments. Unless
otherwise specified, these values are used for all experiments. In a variable length
GA, the initial population of individuals are initialized to length fifteen (the total
number of tasks in the problem), and the maximum allowed length is 150. In
the fixed length GA, we use individuals of length 150.

5 Experimental results

We compare the behavior of fixed and variable length GAs in a nonstationary
environment. In these experiments, the target solution oscillates between two
different problems, G1 and G2, shown in figure 1 every 100 generations. To
emphasize the differences between the two target solutions and increase the dif-
ficulty of finding and maintaining solutions for both targets, we designed G2 to
have the completely opposite set of task dependencies as G1. The results pre-
sented are from individual runs that are representative of overall GA behavior.
We compare four experimental scenarios:

1. A fixed length GA in which era is not reset.
2. A fixed length GA in which era is reset after each target change.
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Fig. 4. Typical plots of average population fitness (left) and average coding length
(right) for a fixed length (150) GA with no resetting era in a nonstationary environment.

3. A variable length GA in which era is not reset.
4. A variable length GA in which era is reset after each target change.

In the runs where era is not reset, the era counter increases uninterruptedly
throughout a run. In the runs where era is reset, the value of era is reset to
zero after each target change; era increases normally in between two consecutive

target changes.

5.1 Fixed versus variable length

Figure 4 shows the typical variation in average population fitness and average
coding length during a fixed length GA run where era is not reset. A sharp drop
in fitness occurs after each target change indicating that the GA has difficulty
retaining both solutions in its population. The alternating high and low peaks
suggest that the GA population has converged primarily on one of the two
target solutions. When the converged solution is the target solution, the average
population fitness reaches above 0.8. When the non-converged solution is the
target solution, the average population fitness is unable to exceed 0.6.

Figure 5 shows the typical variation in average population fitness and average
coding length during a fixed length GA run where era is reset after each target
change. The result is very similar to the run shown in Figure 4. We see sharp
drops in fitness after every target change. The high and low peaks in fitness
indicate that GA is evolving solutions toward only one target. The primary
difference is the existence of smaller oscillations in fitness within the larger peaks
due to increases in the era counter.

Figure 6 shows typical plots of the average population fitness and average
population length of a variable length GA where era is not reset. We again see
sharp drops in fitness after each target change indicating difficulty in retaining
multiple solutions in the population. These data exhibit two notable differences
from the corresponding fixed length results in Figure 4. First, there is little ev-
idence of alternating peaks; the GA appears to be able to find equally strong
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Fig. 5. Typical plots of average population fitness (left) and average coding length
(right) for a fixed length (150) GA with resetting era in a nonstationary environment.
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Fig. 6. Typical plots of average population fitness (left) and average length (right) for
a variable length GA with no resetting era in a nonstationary environment.

solutions for both targets. Average fitness values are slightly lower, but com-
parable, to those achieved by the fixed length GA. Second, the rise in fitness
following each drop is much faster and sharper. These differences suggest that a
variable length GA is better able to adapt to changes in the target solutions.

The variation in average population length shows interesting and unexpected
behavior. Instead of increasing after each target change (as one would predict
based on previous studies [1,2]), the average population length drops sharply
after each target change. The average population length immediately increases
after each drop, and reaches almost 90 for both target solutions. The average
coding length shows similar behavior to a smaller degree, stabilizing at about
20. With respect to coding length, the variable length GA appears to be able
to evolve more compact solutions than the fixed length GA, albeit with slightly
lower fitness.

Figure 7 shows typical plots of the average population fitness and average
population length of a variable length GA where era is reset after each target
change. We observe much smaller drops in individual fitness after target changes
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Fig. 7. Typical plots of average population fitness (left) and average length (right) for
a variable length GA with resetting era in a nonstationary environment.

Test Cases # generations to 1st valid solution
(average/standard deviation)
Variable length GA (era not reset) 19.69/ 22.30
Variable length GA (era not reset) 33.94 / 34.05
Fixed length GA (era reset) 50.33 / 38.54
Fixed length GA (era reset) 52.29 / 44.66

Table 2. Average and standard deviation on the number of generations to find the
first valid solution after every target change.

and variations in individual length that are less clearly correlated with target
changes. Average fitness remains comparable to the fitness achieved in the other
three experiments.

We further evaluate the adaptability of our GAs to changing environments
by examining the average number of generations that a GA requires to find the
first valid solution after each target change. The results, given in table 2, are
collected from twenty runs in each test case. Results show that variable length
GAs, as expected, are more adaptable than fixed length GAs. Surprisingly, not
resetting era actually results in much quicker adaptation for the variable length
GA and somewhat quicker adaptation for the fixed length GA. This result was
unexpected as we expected the era counter to guide the GA in finding a solution
by rewarding for partial solutions.

5.2 Variable length dynamics

Our original hypothesis was that average length would increase following each
target change to provide the GA search process with more resources in the form
of longer individuals. Our variable length GA runs with no resetting era, however,
exhibit completely opposite behavior. Closer examination reveals that the GA
is, in fact, selecting for better resources instead of more resources.
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Fig. 9. Distribution of average fitness of individuals of equal coding length before (A)
and after (B) a target change.

We examine the distribution of fitness with respect to length in the gener-
ations immediately preceeding and following a target change. Figure 8 shows
this data for a sample run. Within a GA run, we take all individuals that are in
populations immediately preceeding a target change (in our case, generations 99,
199, 299, etc.), group those individuals by length, and plot the average fitness of
each group. Similarly, we plot the fitness distribution of all individuals that are
in generations immediately following a target change (generations 100, 200, 300,
etc.). Immediately before a target change (generation “X99”), longer individuals
have higher average fitness than shorter individuals. Immediately after a target
change (generation “X00”), shorter individuals appear to be more fit than longer
individuals. This same dynamic is seen to a stronger degree in similar plots of
the coding length of a population. Figure 9 show the distribution of fitness with
respect to coding length.

Examination of individual members of the population provides an explana-
tion. Both target problems used here consist of fifteen tasks. Thus, individuals
must have coding lengths of at least fifteen to encode a complete solution. As
expected, the data in figure 9.A indicates that the average fitness peaks at cod-
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Fig. 10. Small solution from generation 299 of sample run.
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Fig. 11. Long solution from generation 299 of sample run.

ing lengths that are just slightly longer than fifteen and levels off with increasing
length. For lengths shorter than fifteen, there is a steady linear decrease in fit-
ness. Immediately before a target change, the GA has had time (in the runs
here, 99 generations) to evolve towards the current target. Most individuals in
the population will have some characteristics of the current target. Longer in-
dividuals are more likely to contain complete solutions, and therefore, are also
more likely to be specialized towards the current target.

Figure 9.B shows the fitness distribution in the generations immediately fol-
lowing a target change. Individuals with coding lengths less than fifteen tend to
have higher relative fitness while individuals with longer coding lengths exihibit
steadily decreasing fitness values. Immediately after a target change, much of the
population still consists of individuals that have been evolved towards the previ-
ous target. Individuals with long coding lengths are more likely to be specialized
to the previous target and, thus, more likely to have low fitness with respect to
a new target. Individuals with short coding lengths, on the other hand, are more
likely to contain less specific building blocks that may be applicable to more
target solutions.

Examination of specific individuals from a population supports the above
explanation. Figures 10 and 11 show a small and a large solution, respectively,
from generation 299 of a sample run. The target solution for generations 200
to 299 is problem G1. Accordingly, all task sequences in both solutions are valid
with respect to G1. With respect to problem G2, all task sequences in the smaller
solution are valid, but only the following subset of task sequences (18 out of 52
total) from the longer solution are valid:

[14-13] [1-3] [3-2] [1-3-2] [6-4] [4-5] [6-4-5] [7-6] [6-9] [9-8] [7-6-9] [6-9-8] [7-6-9-8]
[8-12] [12-11] [11-10] [12-11-10] [4-9]

The longer solution is a complete solution to problem G1. It is very specialized
for G1, and consequently, noticeably less fit for G2. The shorter solution does not
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specify a complete solution for either G1 or G2, but is equally fit for both. With
respect to the percent of valid sequences, the shorter solution actually scores
higher than the longer solution and consequently appears more fit immediately
after a target change.

Thus, the sharp drops in average population length seen in figure 6 appear
to be due to selection for more general building blocks following a target change.
In this particular problem encoding, shorter individuals tend to consist of more
general building blocks, longer individuals tend to consist of problem specific
building blocks. By selecting for shorter individuals immediately after a target
change, the GA increases its population resources by increasing the number of
more general building blocks.

The above study also explains why there are no evident drops in individual
length due to a problem change in Figure 7. In GAs where era is reset, the fitness
function is again checking the order of every two adjacent tasks after each target
change. Long individuals, though more specialized to the previous target, are still
likely to contain short task sequences that are valid. As a result, long individuals
drop less in fitness than they do in GAs where era is not reset and remain
competitive with shorter, more general individuals. Surprisingly, resetting era is
not beneficial in this problem as it actually retards a GA’s adaptation to a new
target.

6 Conclusions

In this paper, we investigate the behavior of a variable length GA in a nonsta-
tionary problem environment. We examine how variations in length can help a
GA adapt to new environments.

We perform our experiments on a task scheduling problem under an oscil-
lating environment. Experiment results indicate that a variable length GA has
better and quicker adaptation to a new environment than a fixed length GA.

An interesting and somewhat surprising result showed the variable length
GA undergoing sharp drops in length after each target change. This behavior
is the opposite of what was expected based on previous work. Closer analysis
reveals that the fitness function favors short individuals after a target change
because short individuals contain more general building blocks. Long individuals,
on the other hand, are more likely to contain very specific solutions adapted to
the previous target. Our GA successfully exploits the flexibility of its variable
length representation to better recognize and retain good building blocks.

Our study indicates that variable length representation provides a flexibile
way for GA to reorgainze building blocks after problem changes. A good fitness
function, where building blocks are properly defined, is able to reinforce this
flexibility and improve a GA’s adapation to changing environments.
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