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ABSTRACT 
Because software system testing typically consists of only a very 

small sample from the set of possible scenarios of system use, it can be 
difficult or impossible to generalize the test results from a limited amount of 
testing based on high-level usage models.  It can also be very difficult to 
determine the nature and location of the errors that caused any failures 
experienced during system testing (and therefore very difficult for the 
developers to find and fix these errors).  To address these issues, this paper 
presents a Genetic Algorithm (GA) approach to focused software usage 
testing.  Based on the results of macro-level software system testing, a GA is 
used to select additional test cases to focus on the behavior around the initial 
test cases to assist in identifying and characterizing the types of test cases 
that induce system failures (if any) and the types of test cases that do not 
induce system failures.  Whether or not any failures are experienced, this GA 
approach supports increased test automation and provides increased evidence 
to support reasoning about the overall quality of the software.  When failures 
are experienced, the approach can improve the efficiency of debugging 
activities by providing information about similar, but different, test cases that 
reveal faults in the software and about the input values that triggered the 
faults to induce failures. 
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1. OVERVIEW 
This work focuses on system level, model-based usage testing.  The 

software to be tested is viewed from the perspective of the user as a black 
box system that operates in a specific environment, receives input, and 
provides output.  One or more state-based models of software use are 
developed, using domain-specific knowledge to characterize the population 
of uses of the software (or usage scenarios) and to describe test management 



objectives and constraints.  The usage models are used to assist with test 
planning, to generate a sample of test cases that represent usage scenarios, 
and to support reasoning about test results. 

System-level usage testing approaches have proven to be successful 
for supporting test case selection and reasoning about test results in a variety 
of software projects.  However, the system testing typically consists of only a 
very small sample from the set of possible scenarios of system use.  Thus, it 
can be difficult or impossible to generalize the test results from a limited 
amount of testing based on high-level usage models.  It can also be very 
difficult to determine the nature and location of the errors that caused any 
failures experienced during system testing (and therefore very difficult for 
the developers to find and fix these errors). 

This paper presents a Genetic Algorithm (GA) approach to addresses 
these issues.  As illustrated in Figure 1 and described in detail in section 5, 
the GA accepts input from two sources: (a) domain data generated by the 
usage model to define a usage scenarios and (b) the results (pass/fail) of 
system test.  The initial population is defined as a set of test cases generated 
from a usage model.  Each individual in the population represents a single 
test case.  The individual is sent to the Tester to be processed and supplied to 
the Software Under Test.  The Software Under Test processes this input and 
provides output that is analyzed for correctness by the Test Oracle.  The Test 
Oracle will determine if the output is correct or flawed or if the software 
under test crashed.  The Test Oracle informs the GA of the result: output is 
correct, output is flawed, or Software Under Test crashed.  The GA uses this 
result along with the likelihood that it would occur as defined by the usage 
model to help determine the overall fitness of the individual.  The GA 
outputs individual test cases that caused high intensity failures within the 
high usage areas of the software, thus driving dynamic testing and system 
analyses in a focused manner based on test objectives (as described by the 
usage model) and previous test results. 

 

 
Figure 1.  GA Approach to Focused Software Usage Testing 
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The remainder of this paper is organized as follows.  Section 2 
provides a high-level introduction to Genetic Algorithms and pointers to 
related work.  Section 3 provides some background information about system 
testing and debugging activities and challenges that motivate the GA 
approach presented in this paper.  Section 4 introduces the GA approach to 
focused usage testing, and section 5 provides information about the internal 
details of the GA.  Section 6 provides an example to illustrate application of 
this approach to drive focused testing of a military simulation system.  
Conclusions are presented in section 7. 

2. INTRODUCTION TO GENETIC ALGORITHMS 
A genetic algorithm (GA) is a search algorithm based on principles 

from natural selection and genetic reproduction [Holland 1975; Goldberg 
1989].  GAs have been successfully applied to a wide range of applications, 
[Haupt 1998; Karr 1999; Chambers 2000] including optimization, 
scheduling, and design problems.  Key features that distinguish GAs from 
other search methods include: 

 
• A population of individuals where each individual represents a 

potential solution to the problem to be solved. 
• A fitness function which evaluates the utility of each individual as a 

solution.  
• A selection function which selects individuals for reproduction based 

on their fitness. 
• Idealized genetic operators which alter selected individuals to create 

new individuals for further testing.  These operators, e.g. crossover 
and mutation, attempt to explore the search space without completely 
losing information (partial solutions) that is already found. 
 
Figure 2 provides the basic steps of a GA.  First the population is 

initialized, either randomly or with user-defined individuals.  The GA then 
iterates thru an evaluate-select-reproduce cycle until either a user defined 
stopping condition is satisfied or the maximum number of allowed 
generations is exceeded. 

 



 
Figure 2.  Basic steps of a typical genetic algorithm 

 
The use of a population allows the GA to perform parallel searches 

into multiple regions of the solution space.  Operators such as crossover 
[Holland 1975; Goldberg 1989; Mitchell 1996] allow the GA to combine 
discovered partial solutions into more complete solutions.  As a result, the 
GA is expected to search for small building blocks in parallel, and then 
iteratively recombine small building blocks to form larger and larger building 
blocks.  In the process, the GA attempts to maintain a balance between 
exploration for new information and exploitation of existing information.  
Over time, the GA is able to evolve populations containing more fit 
individuals or better solutions.  For more information about GAs, the reader 
is referred to [Holland 1975; Goldberg 1989; Mitchell 1996; Coley 2001]. 

While, the GA approach presented in this paper is unlike other 
published approaches to the application of GA to support software testing or 
software quality assessment, the “failure-pursuit sampling” work of  
[Dickinson et al. 2001] and the “adaptive testing” work of [Schultz et al. 
1992] are particularly noteworthy with respect to their motivation for the 
work of this paper. 

While [Dickinson et al. 2001] does not explicitly make use of a GA, 
their concept of failure-pursuit sampling helped to provide a foundation for 
the approach presented in this paper.  In failure-pursuit sampling, some initial 
sample of test cases is selected; the sample is evaluated and failures 
recorded; and additional samples are then selected that are in the vicinity of 
failures that occurred in the previous sample. 

[Schultz et al. 1992] demonstrated the use of adaptive testing to test 
intelligent controllers for autonomous vehicles by creating individuals in the 
population that represented fault scenarios to be supplied to simulators of the 
autonomous vehicles.  A benefit of such testing was to provide more 
information to the developers.  According to [Schultz et al. 1992], 

“In more of a qualitative affirmation of the 
method, the original designer of the 
AUTOACE intelligent controller was shown 

procedure GA 
{ 
       initialize population; 
       while termination condition not satisfied do 
       { 

evaluate current population; 
select parents; 
apply genetic operators to parents to create children; 
set current population equal to be the new child population; 

        } 
} 



some of the interesting scenarios generated 
by the GA, and acknowledges that they gave 
insight into areas of the intelligent controller 
that could be improved.  In particular, the 
scenarios as a group tend to indicate classes 
of weaknesses, as opposed to only 
highlighting single weaknesses.  This allows 
the controller designers to improve the 
robustness of the controller over a class as 
opposed to only patching very specific 
instances of problems.”  

3. TESTING AND DEBUGGING CHALLENGES 
Reasoning about the overall quality of a system can be difficult.  For 

example, suppose a system accepts some data value X, and that the user 
profile for this system specifies that user is likely to use values in the range 
30 < X < 70.  A usage model may generate two test cases that specify X as 
40 and 60.  If both of these test cases pass, it is not necessarily true that test 
cases will pass for all values of X.  Similarly, if both of these test cases fail, it 
is not necessarily true that test cases will fail for all values of X.  Additional 
focused testing (using similar, but different, test cases to identify more 
precisely the usage scenarios that induce failures and the scenarios that do 
not induce failures) may be necessary to support reasoning about the overall 
quality of the software. 

In addition, in the situation when failures are observed during system 
testing, more testing can be required in order to precisely determine nature 
and location of the error(s) that caused the failures so the developers can find 
and fix the error.  This find-and-fix process is referred to as “debugging”.  
According to [Myers 1979], “of all the software -development activities, 
[debugging] is the most mentally taxing activity.”  This statement is often 
true today and can be the source of software quality problems.  Test cases 
that reveal failures are often dissimilar to each other, the test results often 
provide little information concerning the cause of the failure and whether a 
similar scenario would fail in a similar manner.  Without additional 
information, and with limited development resources, developers may be 
tempted to apply a small patch to the software to work around the failure 
rather than perform the analyses necessary to support complete 
understanding and correction of the problems that caused the failures. 

A competitive mentality of “developers versus testers” often exists 
during testing.  Because debugging requires additional information 
concerning the usage of the system and performing additional testing, once 
failures occur and the system must be corrected, this mentality should 
transition to “developers and testers versus the system” to facilitate the 
debugging effort.  Developers often need the support of the testers during 
debugging because the developers may not have the necessary testing 



resources to do additional system level testing, or additional information 
concerning the usage of the system.  As described by [Zeller 2001], 

“Testing is another way to gather knowledge 
about a program because it helps weed out 
the circumstances that aren’t relevant to a 
particular failure.  If testing reveals that only 
three of 25 user actions are relevant, for 
example, you can focus your search for the 
failure’s root cause on the program parts 
associated with these three actions.  If you 
can automate the search process, so much 
the better.”  

This description is consistent with the often-used induction approach 
to debugging described by [Myers 1979].  The induction approach begins by 
locating all relevant evidence concerning correct and incorrect system 
performance.  As noted by [Myers 1979], “valuable clues are provided by 
similar, but different, test cases that do not cause the symptoms to appear.  It 
is also useful to identify similar, but different, test case that do cause the 
symptoms to appear. 

Similar to the notion of taking several “snapshots” of the evidence 
from different angles and with different magnification to look for clues from 
different perspectives, the debugging team needs to follow up on any failures 
identified during testing by more finely partitioning the input domain 
according to test results.  This yields new evidence to be compared and 
organized in an attempt to identify and characterize patterns in the system’s 
behavior.  The next step is to develop a hypothesis about the cause of an 
observed failure by using the relationships among the observed evidence and 
patterns.  Analyses can then be performed to prove that the hypothesis 
completely explains the observed evidence and patterns. 

In practice, debugging can be very time-consuming, tedious, and 
error-prone when system-level testing reveals failures.  Success of the 
debugging activity depends critically upon the first step in the process: the 
collection of evidence concerning correct and incorrect system performance.  
Assuming the total amount of evidence is manageable, an increase in useful 
evidence about correct and incorrect system performance can make it easier 
to identify patterns and develop and prove hypotheses.  Thus, a mechanism is 
needed to drive testing and system analyses in a focused manner based on 
previous test results. 

4. USING A GA FOR FOCUSED SOFTWARE USAGE TESTING 
The genetic algorithm (GA) approach described in this paper drives 

dynamic generation of test cases by focusing the testing on high usage 
(frequency) and fault-prone (severity) areas of the software.  This GA 
approach can be described as analogous to the application of a microscope.  
The microscope user first quickly examines an artifact at a macro-level to 



locate any potential problems.  Then the user increases the magnification to 
isolate and characterize these problems. 

Using the GA approach to focused software usage testing, the macro-
level examination of the software system is performed using the 
organization’s traditional model-based usage testing methods.  Based on the 
results of this macro-level examination, a genetic algorithm is used to select 
additional test cases to focus on the behavior around the initial test cases to 
assist in identifying and characterizing the types of test cases that induce 
system failures (if any) and the types of test cases that do not induce system 
failures.  If failures are identified, the genetic algorithm increases the 
magnification by selecting certain test cases for further analysis of failures.  
This supports isolation and characterization of any failure clusters that may 
exist. 

Whether or not any failures are experienced, this genetic algorithm 
approach provides increased evidence for the testing team and managers to 
support reasoning about the overall quality of the software.  In the situation 
where failures are experienced, the genetic algorithm approach yields 
information about similar, but different, test cases that reveal faults in the 
software and about the input values that triggered the faults to induce 
failures.  This information can assist the developer in identifying patterns in 
the system’s behavior and in devising and proving a hypothesis concerning 
the faults that caused the failures. 

Because different software failures vary in severity to the user and in 
frequency of occurrence under certain usage profiles, certain failures can be 
more important than others.  Factors such as the development team’s 
uncertainty about particular requirements, complexity of particular sections 
of the code, and varying skills of the software development team can result in 
clusters of failure in certain partitions of the set of possible use of the 
software.  As discussed in section 5.4 and section 5.5.1, the genetic 
algorithm’s fitness function and selection function can address this issue , and 
help support the generation of test cases to identify failure clusters. 

In the case of usage testing, highly fit individuals in the population 
are those that maximize two objectives.  The first objective is likelihood of 
occurrence.  Maximizing this objective means that the test case individual 
represents a scenario that closely resembles what the user will do with the 
system.  The second objective is failure intensity (defined as a combination 
of failure density and failure severity).  Maximizing this objective means that 
the test case individual has revealed spectacular failures in the system.  
Highly fit individuals with respect to the rest of the population are those that 
maximize both objectives as much as possible.  To address this issue, a 
multi-objective GA technique [Fonseca 1995; Deb 1999; Coello Coello et al. 
2002] is needed.  As described in section 5.4, this application makes use of a 
nonlinear aggregating fitness combination [Coello Coello et al. 2002] to 
handle multiple objectives. 



Furthermore, the purpose of the GA in this application is not to find 
a single dominant individual.  This does not make sense from a testing 
perspective.  Instead, the purpose is to locate and maintain a group of 
individuals that are highly fit.  To do so, the GA for this application uses 
niching [Holland 1975; Horn 1994; Mahfoud 1995].  A niche represents 
some subpopulation of individuals who are similar, but different.  As the GA 
runs, the most dominant niches (not the most dominant individual) survive.  
Niching used for this application is described in section 5.4.3. 

The GA approach is applicable to testing many types of software.  
For example, in section 6 illustrative examples are presented of the 
application of a GA to support high-level usage testing of a military 
simulation system.  For this case study, the test cases for a military 
simulation system consists of a variety of scenarios involving entities such as 
tanks, aircraft, armored personnel carries, and soldiers.  Each entity can 
perform a variety of tasks.  At a basic level, these scenarios involve some 
primary actor performing a task that may or may not involve a secondary 
actor, depending on the task.  Each scenario is performed on a specific terrain 
map.  For example, a scenario may consist of using a terrain map of Fort 
Knox with an M1A1 tank performing an Assault on a T-80 tank.  In this 
example, the M1A1 tank is the primary actor since it performs the task 
(Assault), and it is the focus of the scenario.  The T-80 tank is the secondary 
actor. 

5. GA APPROACH DETAILS 
To implement the GA for this case study example, a number of 

issues had to resolved, including the encoding of real world data, population 
initialization, fitness evaluation, and the use and operation of genetic 
operators.  The following subsections discuss these issues and describe the 
internal details of the genetic algorithm. 

5.1 Input Domain Data 
As illustrated in Figure 2, there are three sources for the Input 

Domain Data that serves as input to the GA application shown in Figure 1.  
First, there is data that represents the bounds of the input domain for the 
software under test.  This boundary data set does not necessarily specify all 
possible data values; rather it could merely specify the extreme values.  For 
example, suppose the system accepts some data value X.  Then the input 
boundary data might specify 0 < X < 10.  Second, there is data that represents 
the user’s profile.  This data defines what input data the user is likely to use 
and, implicitly, what data the user is not likely to use.  For the previous 
example of the data value X, the user profile may specify 3 < X < 7.  The 
third source of input domain data is the set of test cases generated according 
to the user profile.  For example, there may be two test cases that specify X 
as 4 and 6.  The test cases and user profile data sets must be subsets of the 
input boundary data set. 



 

 
Figure 2.  Input Domain Data 

 
Each of these three sources of input domain data is used for a 

specific purpose.  The test cases are used to initialize the population.  The 
user profile data set is used to help evaluate the fitness of individuals, 
specifically used to determine likelihood of occurrence.  This causes the GA 
to focus its search to a particular area of the input domain.  The input 
boundary data set is used to validate that new individuals are consistent with 
what the software under test allows the user to do.  If an individual is created 
that lies outside of the defined input boundary data set, then that individual 
will be discarded by the GA. 

5.2 Encoding 
The test cases generated by the usage model are converted to an 

encoding based on real numbers for use in the GA population.  This type of 
encoding was used so that there is a one to one correspondence between the 
gene and the variable it represents.  In addition, it eliminates the problem of 
Hamming cliffs [Goldberg 1990].  Table 1, Table 2, and Table 3 illustrate a 
sample of the assigned identification numbers (IDs) for use in the GA. 

 

Table 1.  Terrain Identification Numbers 

Terrain ID Number Terrain Map 
1 NTC 
2 Knox 
3 Hunter 
4 Itsec 
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User Profile 
Test Cases 



 

Table 2.  Entity Identification Numbers 

Entity ID Number Simulation Entity 
2 M1A1 
6 T-80 
9 M3A3 
17 SA-9 
27 UH-60 

 

Table 3.  Task Identification Numbers 

Task ID Number Task 
1 Move 
3 Assault 
7 Attack 

11 Hover 
15 Suppressive Fire 

 
The individuals in the population of the GA consist of variations of 

these IDs.  There are ten genes in each individual.  The genotype is shown in 
Table 4. 

 

Table 4.  Genotype for individuals in the genetic algorithm 

Gene Meaning Valid Value Range 
1 Terrain Values 1 – 4 
2 Primary Actor Values 1 – 37 
3 Task Values 1 – 17 
4 Secondary Actor Values 0 – 37 
5 X1 Values greater than or equal to 0 
6 Y1 Values greater than or equal to 0 
7 Z1 Values greater than or equal to 0 
8 X2 Values greater than or equal to 0 
9 Y2 Values greater than or equal to 0 
10 Z2 Values greater than or equal to 0 

 
Each gene represents an input value that a user could supply to the 

software being tested.  The collection of ten genes represents a specific 
simulation scenario that may be run by the user on the Software Under Test.  
For example, Gene 1 represents the terrain map selected by the user.  Gene 2 
represents the primary actor selected by the user, such as a tank (i.e., M1A1, 
T-80), plane, helicopter, etc.  Gene 3 represents the task assigned by the user 
to the primary actor, such as Move, Attack, Transport, etc.  If the selected 



task requires a secondary actor, the user selects another actor, such as an 
enemy tank, enemy plane, friendly soldier, etc.  Gene 4 represents the 
selected secondary actor.  If the selected task does not require a secondary 
actor, Gene 4 is assigned a zero value.  Genes 5 – 7 specify the location of 
the primary actor on the terrain map.  If there is a secondary actor involved, 
then Genes 8 – 10 specify the location of the secondary actor on the terrain 
map.  If there is no secondary actor, then Genes 8 – 10 represent some 
destination location that the primary actor must reach.  An example of an 
individual is shown in Figure 3.  This individual represents a scenario with 
an M1A1 tank assaulting a T-80 tank on the Fort Knox terrain map.  The 
values shown in the first 4 genes of the individual are taken from Table 1, 
Table 2 and Table 3.  The values for genes 5 – 10 are taken from the location 
values specified by the test case. 

 

 
Figure 3.  Representation of test cases within the genetic algorithm 

 
Invalid individuals are discarded.  For example, because a tank 

cannot attack an aircraft, an individual that represents this scenario would be 
discarded.  Other invalid scenarios are those that specify locations (Genes 5 – 
10) that lie outside the bounds of the terrain map.  In addition, land vehicles 
cannot be assigned Z coordinate values greater than 0. 

5.3 Population Initialization 
To provide the GA with a semi-ideal starting position, individuals in 

the GA are initialized according to the test cases generated by the usage 
model.  If the individuals in the GA were initialized randomly, the GA would 
‘waste’ generation cycles looking for individuals located within the user 
profile.  Furthermore, with random initialization, it is possible that the GA 
may not find the individuals located in the user profile, and the results will be 
of little value.  Because some of the individuals located in the user profile are 
already known, initializing the population with these known individuals can 
reduce the number of GA iterations. 

Test Case 
Terrain:       Fort Knox 
Primary Actor:      M1A1  @  location: [400, 34, 0] 
Task:      Assault 
Secondary Actor:   T-80    @  location: [100, 60, 0] 

Gene 

Value 2 2 3 6 400 34 0 0 100 60 

1 2 3 4 5 6 7 10 8 9 



5.4 Fitness Evaluation 
The fitness of individuals is based primarily on maximizing two 

objectives, as graphically depicted in Figure 4.  Optimal individuals are those 
that have a high likelihood of occurring and that result in failures with high 
failure intensity.  Optimal individuals occur in zone 1.  Inferior individuals 
are those with a low likelihood of occurring and would be located in zone 6.   

While the GA system strives to find optimal individuals, there are 
two reasons that this is not always achievable.  First, the software under test 
may be of such high quality that optimal individuals simply do not exist.  
Second, optimal individuals may exist outside of the defined user profile, but 
not within it.  If the GA finds such individuals, they will be in zone 6 if they 
lie outside of the high usage areas of the software as defined by the usage 
model.  Note that the boundary between the optimal, sub-optimal, and 
inferior zones is not necessarily a hard, distinct boundary.  Since the user 
profile is simply an approximation for what the user may do, inferior 
individuals near the boundaries of the optimal and sub-optimal zones may 
also be of interest. 

 

 
Figure 4.  Fitness of Individuals 

 
The height of the optimal and sub-optimal zones is determined by the 

uncertainty in the accuracy of the user profile.  If the user profile is based on 
historical evidence, or if the profile represents expert users, then the 
uncertainty in the accuracy of the user profile will be lower, resulting in a 
shorter height of the zones.  However, if the user profile is based on 
guesswork, or if it represents novice users, then the uncertainty in the user 
profile accuracy will be higher, resulting in a taller height of the zones.  The 
width and number of the optimal and sub-optimal zones is chosen according 
to the level of importance given to the GA concerning various levels of 
failure intensity.  For example, if each failure were of equal importance, there 
would be only one optimal zone, no sub-optimal zones, and a width ranging 
from the lowest intensity level to the highest. 
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6 
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The overall fitness of an individual is based on likelihood of 
occurrence, the failures intensity, and the similarity to other individuals in the 
population.  Each of these criteria is discussed in the following sections. 

5.4.1 Likelihood of Occurrence 
Individuals are first evaluated in terms of the likelihood they will be 

used by the user.  Individuals containing input data that is very likely to be 
used by the user are very highly fit individuals for this particular objective.  
Individuals that contain input data that is not likely to be used by the user are 
very poorly fit individuals.  This evaluation is based on the supplied user 
profile data set.  The likelihood of the input data is calculated by multiplying 
the probability of occurrence of each input value that is used in the test case.  
For example, suppose the probability distribution for the input data is as 
shown in Table 5.  The likelihood that the user would select Input Values 1 
and 2 is 0.15.  The likelihood that the user would select Input Values 1 and 3 
is 0.0375.  Consequently, a test case involving Input Values 1 and 2 would be 
rated as being more highly fit than one involving Input Values 1 and 3.  The 
case study described in this paper only considers the first 4 genes in 
determining the likelihood of occurrence.  This is because genes 1 – 4 
provide the basics of the test scenarios while genes 5 – 10 provide the details.  
Likelihood of occurrence is based on the basics, not the details, of the 
scenario. 

 

Table 5.  Input Data Probability Distribution. 

Input Value 1 0.75 
Input Value 2 0.20 
Input Value 3 0.05 

 

5.4.2 Failure Intensity 
In addition to likelihood of use, the test team is also interested in test 

case individuals that find failures.  Consequently, the second objective to be 
maximized is Failure Intensity, defined as a combination of failure density 
and failure severity.  For example, suppose some individual causes a single 
failure that results in the crash of the software being tested.  The Failure 
Intensity consists of a low failure density (there is only 1 failure) and a high 
failure severity (the system crashes).  In contrast, suppose another individual 
causes multiple failures that give erroneous output but do not crash the 
software being tested.  In this situation, the Failure Intensity consists of a 
high failure density (there were multiple failures) and a low failure severity 
(the system does not crash, but gives erroneous output).  Both of these 
individuals would be of interest, even though the composition of their Failure 
Intensity is different.   



Consider the situation where a test manager differentiates failure 
severity according to five levels, with level 1 the lowest severity and level 5 
the highest.  For an individual test case that causes two level 3 failures, the 
failure intensity could be computed to equal 6, the sum of the failure 
severities.  An individual that causes one level 5 failure would have failure 
intensity equal to 5.  However, this approach to calculating failure intensity 
may not be satisfactory to the test manager.  A single level 5 severity failure 
may be more important than a test case that produces multiple failures of 
lower severity.  To handle this situation, a non-linear scoring method such as 
that shown in Table 6 is recommended. 

 

Table 6.  Example Scoring Technique for Different Severity Levels 

Severity Level Score 
5 18 
4 12 
3 3 
2 2 
1 1 

 
If this scoring technique were applied, an individual that caused two 

level 3 failures would receive a failure intensity score of 6, and an individual 
that caused a single level 5 failure would receive an intensity score of 18.  
Similarly, an individual that caused three level 2 failures and two level 3 
failures would receive an intensity score of 12.  This yields a more useful 
result to the test manager than a linear scoring method.  Obviously, the 
choice of scoring algorithm depends on the characteristics of the software 
being tested and the test management objectives. 

5.4.3 Niching 
As a genetic algorithm runs, the population of individuals will 

eventually converge to a single solution that dominates the population, and 
the diversity of the population is ultimately lowered.  When a GA is applied 
to software usage testing, each individual represents a single test case.  
Consequently, the genetic algorithm would eventually converge to some test 
case that is both likely to occur and reveals failures of high intensity.  To 
avoid having a single individual dominate the population, a niching 
technique [Holland 1975; Mahfoud 1995; Horn 1997] is used.   

A niche represents some subpopulation of individuals who share 
some commonality.  To apply this technique to software usage testing, a 
niche is formed for each unique combination of likelihood, failure intensity, 
and genetic values for the genes 1 through 4.  That is, individuals that share 
the same likelihood, failure intensity, and genes 1 through 4 will occupy the 
same niche, or subpopulation.  For example, a niche would be represented by 
a likelihood value of .07, a failure intensity value of 12, and genes values {2 



2 3 6} for genes 1 through 4.  In a population of 500, there may be 20 
individuals who have these same values and would, consequently share this 
same niche.  Another niche would be represented by a likelihood value of 
.05, a failure intensity of 10, and gene values {1 3 3 5} for genes 1 through 4.  
This type of niching is based on both the phenotype and partial genotype of 
the individuals.  By implementing niches in the GA, the population will 
converge not to a single dominant individual, but to multiple dominant 
niches. 

Specifically, niching is performed based on fitness sharing [Holland 
1975].  Fitness sharing reduces the fitness values of individuals that are 
similar to other individuals in some way (i.e., the various niches in the 
population).  This type of niching was used because of its success in prior 
work [Mahfoud 1995].  For this application, an individual’s fitness value is 
reduced by dividing its fitness by the number of individuals that share its 
same niche. 

5.4.4 Determining Overall Fitness 
Highly fit individuals in the population are those maximize the 

objectives of likelihood of occurrence and failure intensity.  A nonlinear 
aggregating fitness combination [Coello Coello et al. 2002] is used to 
identify individuals based on these two objectives.  Determining failure 
intensity is already time consuming, therefore, this type of fitness 
combination was selected for its simplicity and speed.  In addition, it directly 
addressed the needs of this particular case study. 

Each individual i is given a combined fitness value that is based on 
the likelihood of occurrence of individual i, the failure intensity revealed by 
individual i, and the total number of individuals in the population p that also 
occupy the same niche as individual i.  The fitness function to calculate the 
overall fitness value for an individual i is given as follows: 

 

( ) ( )( )
( )ipSizeNiche
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y

,
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×=  

Equation 1.  GA Fitness Function 

 
The variable y represents a nonlinear scaling factor that can be 

adjusted by the test team.  This scaling factor is independent of the 
individuals in the population.  Using the microscope analogy, the y value is 
analogous to the magnification level of the microscope.  A higher y value 
represents a higher magnification, and vice versa.  The higher the value of y 
used in the GA, the faster the population will converge to the most dominant 
niches, and the less diversity there will be in the population.  The lower the 
value of y, the slower the population will converge and the more diversity 



there will be in the population (assuming that there is no one individual that 
is exceptionally fit).   

If the scaling factor is not high enough, optimal individuals may not 
be found, or would be lost in the process.  This may occur in large 
populations when weaker individuals may dramatically outnumber more 
optimal individuals.  A higher scaling factor will help optimal individuals 
survive in a large mass of weaker individuals. 

5.5 Genetic Operators 
To create children from a given population, genetic operators such as 

selection, crossover, and mutation operators are applied to the individuals.  
Selection is first used to select parents from the population according to the 
overall fitness value, as discussed in section 5.4.  Strongly fit individuals 
(higher fitness values) are more likely to be selected for reproduction than 
weaker individuals (lower fitness values).  Consequently, the average 
population fitness should improve with each generation.  Once parents are 
selected, crossover and mutation operators are applied to the parents to create 
children.  The crossover and mutation operators provide the GA with the 
ability to explore the search space for new individuals and to create diversity 
in the population.  The final result is a new population representing the next 
generation. 

5.5.1 Selection 
The GA selection process used for this application is the Fitness 

Proportional Selection [Holland 1975].  With this process, an individual’s 
probability of being selected for reproduction is proportional to the 
individual’s fitness with respect to the entire population.  Each individual’s 
fitness value is divided by the sum of the fitness values for all the individuals 
in the population.  The resulting fitness value is then used to select parents, 
who then have the opportunity to pass on their genetic material (encoded 
information) to the next generation.  Highly fit individuals are therefore more 
likely to reproduce.  This helps to improve the quality of the population.  An 
example of fitness proportional values is shown in Table 7.  As can be seen, 
individual 4 is the most likely to be selected, and individual 2 is the least 
likely to be selected.  Since this process depends on an individual’s fitness 
proportional to the population, the tester can easily influence the selection 
process by altering the scaling factor of the fitness function, as discussed in 
section 5.4.4. 

 



Table 7.  Example of fitness proportional values 

Individual Original Fitness Value New Fitness Value 
1 2 2 / 21 = .0952 
2 1 1 / 21 = .0476 
3 4 4 / 21 = .1904 
4 9 9 / 21 = .4285 
5 5 5 / 21 = .2381 

Sum 21 .9998 
 

5.5.2 Crossover 
To create children, the GA for this application uses a single-point 

crossover operator that takes two parent individuals as input and outputs two 
children that are similar, but different, from the parents.  This operator 
randomly selects a point in the genetic code of two parents and then swaps 
all genes between the parents that lie after the crossover point.  When 
crossover is allowed between parents from different niches, diversity is 
encouraged.  For this case study, every individual in each generation is 
processed by the crossover operator, and, if a child represents an invalid 
scenario, it is discarded from the population and replaced by its 
corresponding parent.  For example, if Child 1 were invalid, it would be 
removed and replaced by Parent 1.  The basic operation of crossover is 
shown in Figure 5. 

 

 
Figure 5.  One-point crossover 

 

Parent 1 

Parent 2 

Randomly Selected Crossover Point 

Child 1 

Child 2 

Parent 1 Genes Parent 2 Genes 

Parent 1 Genes Parent 2 Genes 

2 2 3 6 400 34 0 0 100 60 

4 1 3 5 10 94 0 0 300 94 

4 1 3 6 400 34 0 0 100 60 

2 2 3 5 10 94 0 0 300 94 



5.5.3 Mutation 
In addition to the crossover operator, the GA for this application uses 

a single-point mutation operator that takes one individual as input, makes a 
small, random change to the genetic code of this individual, and outputs one 
mutant that is similar, but different, to the original individual.  This operator 
randomly selects a gene in the genetic code of an individual and mutates that 
gene by randomly selecting some new value.  For this case study, every 
individual in each generation is processed by the mutation operator, and, if 
the mutant represents an invalid scenario, it is discarded from the population 
and replaced by the original individual.  The basic operation is shown in 
Figure 6. 

 

 
Figure 6.  One-point mutation 

 

6. EXAMPLE 
The application of the GA to software usage testing was based on a 

military simulation system.  The population of interest for the examples 
included four terrain maps, thirty-seven primary and secondary actors, and 
seventeen tasks that are available for use with OTB. 

To focus on observing and understanding the behavior of the GA for 
use in software testing, the Failure Intensity Evaluation portion of Figure 1 
was simulated.  Test cases were not actually performed on the military 
simulation system.  A set of simulated failures was developed for use in all 
the examples.  Simulated failures included problems with terrain maps, 
problems with a specific entity or task regardless of terrain, actor, etc.  These 
simulated failures were representative of the types of problems seen in the 
real system.  Failure intensities greater than 12 represented system crashes.  
Failure intensities less than 12 represented non-terminating failures.  The 
scoring system used is shown in Table 8.  This is the same scoring technique 
proposed in Table 6.  Multiple failures per test case were also simulated.  As 
a result, a test case may reveal a failure intensity of 5, meaning that there 
were two failures of with a score of 3 and 2, respectively. 

 

Randomly Selected Mutation Point 
Individual 

Mutant 

Randomly Selected Genetic Value 

2 2 3 6 400 34 0 0 100 60 

2 2 8 6 400 34 0 0 100 60 



Table 8.  Failure intensity scoring system 

Score Meaning 
18 Repeatable, terminating failure 
12 Irregular, terminating failure 
3 Repeatable, non-terminating failure 
2 Irregular, non-terminating failure 
1 No failures 

 
Two similar, but slightly different, user profiles were developed to 

examine the behavior of the GA when slight changes in a user profile occur.  
Sample test cases were generated for each user profile.  The GA was 
initialized using each set of sample test cases, the corresponding user profile, 
and the input boundary (as described in section 5.1).  For all the GA runs, the 
population size was 100 and the number of generations was 30.The results 
for three examples of the GA are shown in Figure 7, Figure 8, Figure 9, 
Figure 10, Figure 11 and Figure 12.  Each point on the graphs represents a 
niche in the population, not a single individual.  The data supporting these 
figures is shown in Table 9,  

 
Table 10, Table 11, Table 12, Table 13, and Table 14, respectively.  

These tables also show how many individuals occupy each niche. 
In the first example, Figure 7 shows the niches that were formed 

after the fitness evaluation of the first generation formed from test cases 
generated according to User Profile 1.  Figure 8 shows the niches that were 
formed after the fitness evaluation of the thirtieth generation.  Notice that 
after 30 generations, the GA has converged to a few dominant niches.  A 
comparison of Figure 7 and Figure 8 indicates that the GA has found four 
more niches that are very likely to occur and contain high failure intensities.  
Weaker niches did not survive. 

In the second example, Figure 9 shows the niches that were formed 
after the fitness evaluation of the first generation formed from test cases that 
were generated according to User Profile 2.  Figure 10 shows the niches that 
were formed after the fitness evaluation of the thirtieth generation.  Notice 
that after 30 generations, the population of the GA has not converged 
sufficiently, but rather grew more divergent.  This suggests that the fitness 
function and selection process are not sufficiently countering the effects of 
the crossover and mutation operators. 

In the third example, the GA was reapplied using the same input data 
as in the second example.  However, the scaling factor of the fitness function 
was increased from a value 1 to 2.  This was done to increase the 
convergence of the population, so that the final population does not grow 
more divergent as in the second example.  The initial niches for this example 
of the GA, shown in Figure 11, were the same as for the second example 
(i.e., Figure 11 is identical to Figure 9).  However, as shown in Figure 12, the 



results were much different from that of Figure 10.  These results are very 
similar to those shown in Figure 8.  The GA has found four new niches that 
are very likely to occur and contain high failure intensities.  The weaker 
niches did not survive. 

The third example demonstrates a key aspect of the fitness function 
of the GA.  The scaling factor of the fitness function plays a critical and 
delicate role in the finding and maintaining of optimal solutions.  As 
illustrated in the second example, if scaling factor is too low, optimal 
solutions may not be found because the level of exploitation is diminished.  
However, if the scaling factor is too high, diversity and exploration will be 
diminished. 

In the last two examples, the GA was able to overcome a less than 
optimal initial population.  Notice in Table 11 and Table 13 that the initial 
populations were heavily biased towards the niche with the highest 
likelihood and low failure intensity.  Table 12 and Table 14 show that the 
final populations are more balanced (in comparison to Table 11 and Table 
13, respectively), and resulted in niches that are more interesting in terms of 
high failure intensity, while also being very likely to occur. 

Finally, in each example, the final populations consist of niches that 
are: 

1. Very likely to occur and resulted in a high failure intensity 
2. Similar, but different.  As described in [Myers 1979], similar, but 

different, test cases help to identify the failure’s root cause.  
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Figure 7.  Test case niches for User Profile 1 after Generation 1. 
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Figure 8.  Test case niches for User Profile 1 after Generation 30. 

 



Table 9.  Number of individuals for test case niches shown in Figure 7 

Likelihood Failure 
Intensity Terrain Primary 

Actor Task Secondary 
Actor 

Niche 
Size 

0.0005 1 Itsec M16A2 Suppressive 
Fire 

AK47 6 

0.0005 3 Itsec M16A2 Suppressive 
Fire 

AK47 1 

0.0040 20 Hunter AH-64 Recon SA-9 1 
0.0040 20 Hunter AH-64 Recon SA-15 7 
0.0043 9 Itsec M16A2 Location 

Fire 
AK47 5 

0.0043 12 Itsec M16A2 Location 
Fire 

AK47 1 

0.0067 15 NTC M1A1 Assault BMP-2 7 
0.0072 10 Itsec AH-64 Attack T-72 3 
0.0072 13 Itsec AH-64 Attack T-72 3 

0.0080 18 Itsec M3 Transport SAW 
Gunner 5 

0.0080 21 Itsec M3 Transport SAW 
Gunner 1 

0.0083 3 Knox M1A1 Assault SA-9 7 
0.0111 1 Knox AC-130 Attack SA-15 6 
0.0185 14 Knox AH-64 Recon BMP-2 6 
0.0223 18 NTC M3 Transport DI-M224 7 
0.0370 15 Knox AC-130 Ingress SA-15 7 
0.0370 15 Knox AC-130 Ingress SA-9 7 
0.0370 21 Knox AC-130 Ingress T-80 7 
0.0603 11 NTC M1A1 Assault T-72 7 
0.0750 9 Knox M1A1 Assault T-80 6 

 
 

Table 10.  Number of individuals for test case niches shown in Figure 8 

Likelihood Failure 
Intensity Terrain Primary 

Actor Task Secondary 
Actor 

Niche 
Size 

0.0223 18 NTC M3 Transport SAW 
Gunner 5 

0.0223 18 NTC M3 Transport DI-M224 7 
0.0370 15 Knox AC-130 Ingress SA-15 3 
0.0370 15 Knox AC-130 Ingress SA-9 8 
0.0370 21 Knox AC-130 Ingress T-80 8 
0.0603 9 NTC M1A1 Assault T-80 6 
0.0603 11 NTC M1A1 Assault T-72 5 
0.0603 21 NTC M1A1 Assault T-80 19 
0.0603 23 NTC M1A1 Assault T-72 13 
0.0750 9 Knox M1A1 Assault T-80 11 
0.0750 11 Knox M1A1 Assault T-72 15 
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Figure 9.  Test Case Niches for User Profile 2 after Generation 1 
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Figure 10.  Test Case Niches for User Profile 2 after Generation 30 

 



Table 11.  Number of individuals for test case niches shown in Figure 9 

Likelihood Failure 
Intensity Terrain Primary 

Actor Task Secondary 
Actor 

Niche 
Size 

0.0185 2 Knox AH-64 Recon SA-9 8 

0.0223 18 NTC M3 Transport SAW 
Gunner 8 

0.0370 15 Knox AC-130 Ingress SA-15 7 
0.0669 9 NTC M1A1 Assault T-80 8 
0.0833 11 Knox M1A1 Assault T-72 8 
0.0999 1 Knox AC-130 Attack SA-9 8 
0.1499 2 Knox AH-64 Attack SA-9 53 

 
 

Table 12.  Number of individuals for test case niches shown in Figure 10 

Likelihood Failure 
Intensity 

Terrain Primary 
Actor 

Task Secondary 
Actor 

Niche 
Size 

0.0223 12 NTC M3 Transport DI-M224 4 
0.0223 18 NTC M3 Transport DI-M224 2 
0.0321 20 Hunter AH-64 Attack SA-9 7 
0.0370 15 Knox AC-130 Ingress SA-15 10 
0.0370 15 Knox AC-130 Ingress SA-9 5 
0.0370 21 Knox AC-130 Ingress T-80 4 
0.0669 9 NTC M1A1 Assault T-80 9 
0.0669 11 NTC M1A1 Assault T-72 8 
0.0669 21 NTC M1A1 Assault T-80 18 
0.0669 23 NTC M1A1 Assault T-72 13 
0.0833 9 Knox M1A1 Assault T-80 5 
0.0833 11 Knox M1A1 Assault T-72 9 
0.1499 2 Knox AH-64 Attack SA-9 6 
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Figure 11.  Test Case Niches for User Profile 2 after Generation 1 with 

scaling factor of 2. 
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Figure 12.  Test Case Niches for User Profile 2 after Generation 30 with 

scaling factor of 2. 

 



Table 13.  Number of individuals for test case niches shown in Figure 11 

Likelihood Failure 
Intensity Terrain Primary 

Actor Task Secondary 
Actor 

Niche 
Size 

0.0185 2 Knox AH-64 Recon SA-9 8 

0.0223 18 NTC M3 Transport SAW 
Gunner 8 

0.0370 15 Knox AC-130 Ingress SA-15 7 
0.0669 9 NTC M1A1 Assault T-80 8 
0.0833 11 Knox M1A1 Assault T-72 8 
0.0999 1 Knox AC-130 Attack SA-9 8 
0.1499 2 Knox AH-64 Attack SA-9 53 

 
 

Table 14.  Number of individuals for test case niches shown in Figure 12 

Likelihood Failure 
Intensity Terrain Primary 

Actor Task Secondary 
Actor 

Niche 
Size 

0.0370 15 Knox AC-130 Ingress SA-15 5 
0.0370 21 Knox AC-130 Ingress T-80 7 
0.0669 9 NTC M1A1 Assault T-80 2 
0.0669 11 NTC M1A1 Assault T-72 9 
0.0669 21 NTC M1A1 Assault T-80 30 
0.0669 23 NTC M1A1 Assault T-72 31 
0.0833 9 Knox M1A1 Assault T-80 6 
0.0833 11 Knox M1A1 Assault T-72 10 

 



7. CONCLUSIONS 
This paper introduces a genetic algorithm approach to software usage 

testing that is used to explore the space of input data and identify and focus 
on regions that cause failures.  Analysis of the examples in this paper 
demonstrates that genetic algorithms can be used as a tool to help a software 
tester search, locate, and isolate failures in a software system.  The use of 
genetic algorithms supports automated testing and helps to identify those 
failures that are most severe and likely to occur for the user. 

The strategy presented in this paper relies on a technique that not 
only helps the tester to isolate failure clusters, but also provides the developer 
with more information concerning the faults in the software and the input 
values that triggered them.  The developer can then use this information to 
search, locate, and isolate the faults that caused the failures.  The result can 
improve efficiency of both the testing and the development teams and can 
support subsequent improvements in the software development process. 

The examples discussed in this paper raise a number of new ideas 
and issues for future consideration, such as the use of a global parallel 
genetic algorithm, different representation scheme, restrictive mating, and 
genetic algorithm parameter sensitivity to different user profiles.  For 
example, current testing practice involves several testers working on 
different test cases at the same time.  For the example application discussed 
in this paper, the fitness evaluation lends itself readily to parallelism.  A 
global parallel genetic algorithm could take advantage of this parallelism.  
Such an approach could provide automated support to the current testing 
practice of distributed work effort.  While each of these areas for future 
consideration could be further investigated with respect to applicability for 
software testing, as demonstrated by the examples of this paper, the simple 
genetic algorithm approach presented in this paper provides in itself a useful 
contribution to the selection of test cases and a focused examination of test 
results.  Thus, application of this approach can support reasoning about test 
results to support quality system assessment and/or debugging activities. 
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