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Abstract. We introduce a genetic algorithm (GA) with a new representation
method which we call the proportional GA (PGA). The PGA is a multi-character GA
that relies on the existence or non-existence of genes to determine the information
that is expressed. The information represented by a PGA individual depends only
on what is present on the individual and not on the order in which it is present. As
a result, the order of the encoded information is free to evolve in response factors
other than the value of the solution, for example, in response to the identification
and formation of building blocks. The PGA is also able to dynamically evolve the
resolution of encoded information. In this paper, we describe our motivations for
developing this representation and provide a detailed description of a PGA along
with discussion of its benefits and drawbacks. We compare the behavior of a PGA
with that of a canonical GA (CGA) and discuss conclusions and future work based
on these preliminary studies.
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1. Introduction

A genetic algorithm (GA) works with a population of individuals each
of which represents a potential solution to the problem to be solved.
A typical individual is a binary string on which the problem solution
is encoded. Problem representation is one of the key decisions to be
made when applying a GA to a problem. How a problem is represented
in a GA individual determines the shape of the solution space that a
GA must search. As a result, different encodings of the same problem
are essentially different problems for a GA [26]. Selecting a represen-
tation that correlates with a problem’s fitness function can make that
problem much easier for a GA to solve [18, 5]. In the traditional GA
representation, most decisions regarding a problem’s representation are
decided and fixed prior to execution. Unfortunately, there is often not
enough information about a problem to make effective decisions on
arrangement of information.

We introduce a GA with a new representation format which we call
the proportional GA (PGA). Like a traditional GA, a PGA encodes so-
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Figure 1. Example of location dependent problem representation. Each parameter
value is encoded at a fixed location on each individual.

lutions as linear strings. A PGA, however, is a multi-character GA that
relies on the existence or non-existence of genes to determine the infor-
mation represented. The information represented by a PGA individual
depends only on what is present on the individual and not on the order
in which it is present. As a result, the order of the encoded information
can evolve in response factors other than the value(s) of the solution,
for example, in response to the search for tightly linked building blocks.
The PGA representation achieves location independence without the
additional overhead of “tags” or “location markers” that many existing
location independent encodings must use. In addition, a PGA is able
to dynamically adapt the resolution of encoded information.

This paper introduces this new representation format and discusses
the motivations behind our work. We also provide details on how to
implement a PGA, describe preliminary experimental comparisons of
a PGA with a canonical GA (CGA), and discuss initial conclusions
about the PGA.

2. Background

The importance of the arrangement of encoded information has been
recognized since the introduction of the CGA. Holland [17] recom-
mended the use of an inversion operator as a way to rearrange in-
formation to find tightly linked building blocks. A building block is a
collection of bits or regions on an individual that work together to
affect the fitness of that individual. Early GA studies successfully used
a representation in which both the value and the ordering of the genes
are dynamically evolved by a GA [1] and investigated the effects of gene
order on a GA [11]. Nevertheless since then, much of the community
has, in a sense, “converged prematurely” to the neat, orderly, fixed
encodings that are so common today.

Figure 1 shows an example of a typical CGA problem representation.
Information is encoded on an individual in a location dependent man-
ner, e.g. bits 0 to 3 always represent parameter 1; bits 4 to 7, parameter
2; and so on. The ordering of the information on an individual is typ-
ically an arbitrary programmer decision. A difficulty with this type of
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representation arises due to crossover’s positional bias [9]. Positional
bias refers to the fact that bits that are relatively far apart on an
individual will be more likely to be disrupted (separated) by crossover
than bits that are close together. Conversely, bits that are close to-
gether are more likely to be treated as atomic units (not separated)
by crossover than bits that are far apart. If there is epistasis between
various components of a problem solution, encoding those components
close together will reduce the chance that crossover will disrupt those
components. As encoded in Figure 1, the probability that crossover
will disrupt paraml and param?2 is much lower than the probability
that crossover will disrupt paraml and param4. The problem is that we
do not always know which components are epistatic, and an arbitrary
arrangement of the components of a solution on an individual may or
may not elicit good performance from a CGA.

A number of options have been investigated to deal with this prob-
lem, including operators such as inversion [17, 12] and uniform crossover
[33] which have little or no positional bias. A significant amount of
research has also been devoted to examining ways in which problem
representation may be designed to improve the GA search process.
Numerous studies have focused on representations that allow a GA to
dynamically evolve the arrangement of information on an individual.
This class of representations provides flexibility at the expense of an
increased search space. An alternative approach is the use of genotype-
to-phenotype mappings to distinquish and transform between search
space and solution space.

2.1. BIT LEVEL LOCATION INDEPENDENCE

The basic unit of information on a typical GA individual is a bit. Thus,
the bit level is the lowest at which one would need to consider the
arrangement of information. In some cases, problem encoding naturally
places the bits that make up a building block in close proximity on an
individual, e.g. each of the groups of four bits that encode for a single
parameter value in figure 1. In other cases, a building block may consist
of bits that are spread out across an entire individual. In the latter
example, the ability to dynamically evolve the order of the bits on an
individual would improve linkage among related bits and help identify
and preserve building blocks.

Goldberg et al. [14] developed the messy GA to investigate whether
a GA is able to identify and recombine building blocks to form optimal
solutions. The messy GA encodes individuals as a vector of pairs, where
each pair specifies the location and value of a bit. Special rules deal with
overspecified (duplicate) or underspecified (missing) bits. This encoding
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allows a GA to evolve both the value and the ordering of information
on an individual. The fact that the physical ordering of information on
an individual can be different from the interpreted ordering means that
a messy GA can arrange related bits into close proximity to decrease
the chance of disruption by crossover. Thus, a messy GA can rearrange
information to form tightly linked building blocks which may then be
recombined to create a complete solution. Empirical tests indicate that
a messy GA can solve difficult, deceptive problems, even when encod-
ings are “loose”. In comparison, a simple GA, on average, is only able
to achieve about 25% of the correct solution on the problems tested.

The fast messy GA [13] improves upon the messy GA by reducing
the computational efforts in the early phases of the messy GA. The gene
expression messy GA [19] enhances the messy GA to actively search
for linkage relationships within a search space. The linkage learning
GA [16] is an elegant extension which uses a modified representation
and new operators that alter the relative positioning of genes to create
building blocks.

While the messy GA and linkage learning GA allow for bitwise loca-
tion independence in the problem representation, the mapping from a
GA individual to a problem solution still retains some aspects of order:
(1) the order in which bits appear in an individual affects their expres-
sion, and (2) some sort of reordering of the bits is typically required to
decode an individual into a solution. A side effect of the latter is that
each bit within a list of ordered bits has a specific meaning or use, e.g.
the 2nd binary digit. As a result, all encoding bits must exist in order
for a solution to be formed. In the messy GA, missing or duplicate
bits require special repair or selection mechanisms to determine what
is expressed. These special mechanisms can increase the complexity
of the system and potentially introduce biases into the search process.
The linkage learning GA eliminates some of these biases by maintaining
copies of all bits in each individual.

2.2. GROUP LEVEL LOCATION INDEPENDENCE

Many problems such as the example in figure 1 use multiple bits to
encode the component values of their solutions. These groups of bits
are obvious building blocks which would likely benefit from a tight
encoding. Combinations of these basic building blocks or genes may
also create higher level building blocks. As a result, the ordering and
arrangement of groups of bits (basic building blocks) has also been an
active area of research.

Wu and Lindsay [37] developed the floating representation to study
the maintenance of diversity in a GA. This representation assigns a tag
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Figure 2. Example of the floating representation.

to each parameter or basic building block in a solution. The fitness func-
tion then searches each individual for all tags and retrieves the value of
each parameter from the bits immediately following each tag. Figure 2
shows an example of how a problem may be encoded with the floating
representation. In this example, the tag for param2 is 1101 and the tag
for param3 is 0111. The floating representation allows basic building
blocks to be encoded anywhere on an individual while keeping the
component bits of a basic building block together. This representation
allows for overlapping building blocks which could reduce the amount
of resources required to specify a solution. Like the messy GA, special
rules are necessary to deal with overspecification and underspecification
of values. Studies indicate that a GA using the floating representation
is able to retain greater diversity in the population and that genetic
operators in this system have more exploratory power [36].

Soule and Ball [32] investigated an encoding similar to the floating
representation focusing on the idea of reading frames. Tags were used
to delimit genes which could appear anywhere on an individual. These
studies were conducted to investigate the likelihood and consequences
of evolving overlapping genes. While performance varied from problem
to problem, the GA was able to evolve genes much longer than the
individuals encoding them.

Burke et al. [4] investigated the evolution of the Virtual Virus (VIV)
which encoded genes as location independent character segments. This
work focused on investigating the factors that affect the evolved size
and fitness of individuals and on understanding the use of non-coding
regions in a GA. Empirical studies produced clear evidence of regions
switching between coding and non-coding status, adding support to the
hypothesis that non-coding regions may serve as backups for coding
regions by storing extra copies of useful information. Both coding and
non-coding regions contained obvious building blocks (potential genes).
In addition, the GA appeared to monitor the length of evolved individ-
uals in response to parameter settings such as mutation rate. Variation
in average length of individuals throughout a run suggested that the
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GA exploits longer individuals early in a run when extra resources are
helpful in searching for potential solutions then fine tunes to shorter
individuals later in the run in response to parsimony pressure.

Group-wise location independence suffers from some of the same
weaknesses as bit-wise location independence. There is again the notion
that each building block has a specific meaning or contribution and,
as a result, a value for every building block is needed in order for a
solution to be formed. Missing and duplicate building blocks require
special treatment. In addition, the final arrangement of building blocks
can be sensitive to early decisions in a GA run. Bad decisions early
in a GA run could result in arrangements in which it is impossible to
encode all building blocks.

2.3. ALTERNATIVE LOCATION INDEPENDENT ATOMIC UNITS

Both the bit-level and group-level use fairly general atomic units that
can be used to encode more complex information. An alternate method
is to make the atomic units themselves more complex. A number of
applications have successfully used such representations. Each unit is
a larger, more comprehensive idea or value than a bit, each variation
of the unit may be considered a “character”, and the alphabet size is
typically much larger than two. The collection of units on an individuals
are “expressed” and work together to create a solution. Information not
encoded on an individual cannot be and is not expressed. The ordering
of the units on a GA individual should not effect the fitness of the
individual.

A common example of such a representation is the evolution of rule
sets [15, 38]. Each individual represents an entire rule set for controlling
robots and the basic atomic units are condition-action rules. Crossover
exchanges groups of rules, but will not fall within a rule. Mutation and
other related operators change individual rules. Each individual (rule
set) is evaluated on the behavior of a robot using that rule set. Rules
are selected to fire based on the similarity of the condition clause of a
rule with the current conditions of the robot. Thus, the collection of
rules in a rule set is expected to affect its performance. The ordering
of the rules in a rule set has absolutely no effect on the interaction of
the evolved rules when applied to a problem.

Another related representation is Franceschini et al.’s [10] work on
disaggregation. A GA is used to evolved the configuration of a group
of entities which satisfies pre-specifed rules. As there is no distinction
among the entities, each GA individual simply encodes a vector of
coordinates. The order in which these coordinates are arranged on an
individual had no effect on the solution. The fitness evaluation simply
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considers the content or collection of coordinates encoded. The exis-
tence of a coordinate affects the solution, the location of that coordinate
does not.

Representations which use complex atomic units can be very ef-
fective at exploiting the advantages of location independence. Their
implementation, however, will often require development of complex
representations and problem specific operators.

2.4. GENOTYPE TO PHENOTYPE TRANSFORMATIONS

Genotype to phenotype transformations or mappings have also been
studied as a way to improve GA problem representations. Such trans-
formations distinguish between the search space and the solution space
of a problem and allow for the development of a search space that is
amenable to the GA search process when a solution space is not. One
might take advantage of such a distinction to develop genotypes which,
for example, simplify or otherwise modify the search space, include
redundancies which could provide the GA with “backup copies” or a
form of memory, include neutral classes (classes of multiple genotypes
that map to a single phenotype) to increase connectivity in the solution
space, or eliminate the generation of invalid solutions (and the need
for repair or specialized operators). Some examples of approaches to
studying genotype to phenotype transformations include the following.

Kargupta and Park [20, 21] examine transformations of a fitness
function into Fourier space as a way distributing fitness evaluation
and show that for a given class of functions, such evaluations may
be performed in polynomial time. Redundant representations, which
investigate mappings where only a subset of the encoded information
on an individual is expressed, include diploidy and dominance map-
ping [25, 27, 31, 39], the structured GA [8], as well as many of the
approaches discussed in the previous sections. A common side effect of
redundant representations is the emergence of neutral variants. Studies
of mappings that allow neutral variants indicate benefit in terms of
diversity and efficiency [2, 30, 34]. Genetic programming studies have
investigated dynamic evolution of the genetic code (which essentially
dictates the genotype to phenotype mapping) [22, 23, 29]. A GA has
also been used to develop simulations of gene expression and regulation
in artificial cellular environments [24].
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3. The proportional GA representation

If one considers the DNA level of encoding information in a genome,
it appears to be very similar to a traditional CGA encoding. The sys-
tem is looking for a desired sequence or pattern of “characters” whose
encoding provides a desired value. Characters are chosen from a fixed
alphabet. The biological alphabet size happens to be four; the com-
putational alphabet size is typically two. A correctly ordered sequence
contributes positively to an individual’s fitness. An incorrect sequence
contributes partial or no credit to an individual’s fitness. Order-based
encoding is an essential component of DNA information representation.
All of the basic units of information that DNA can represent, i.e. genes,
are encoded as ordered sequences.

If, however, we make the assumption that these basic units of in-
formation exist, and move up to a genome level viewpoint, we see an
entirely different picture of what is being encoded. A biological genome
encodes the collection of genes necessary to create a life form. A gene
is expressed when it is translated into a protein product and can only
be expressed if it exists on the genome. Multiple copies of a gene
produces more of the protein for which it encodes. The interaction
of the expressed proteins within a cell makes life possible. At this level,
the key point is not the order of the encoded information, but the
combination or content of the encoded information on a genome. This
viewpoint requires, of course, that all of the “machinery” or encoding
for the components (genes) that make up the content is already there.
By focusing on a more abstract view of the genome as a description
of what is available to interact within a cell, however, the existence or
nonexistence of a gene has a much greater impact than the location of
a gene.

The PGA representation is based on this idea that it is the content
rather than the order of the encoded information that matters. We
extend the idea of location independent atomic units from section 2.3
to a more generally usable encoding for integer and floating point num-
bers. Specifically, the PGA assigns one or more unique characters to
each parameter or component of a solution. The value of a parameter
is determined from the proportion of the characters assigned to that
parameter as compared with the total number of characters in the
individual, or from the relative proportions of the assigned characters
of that parameter. Thus, characters that exist are “expressed” and,
consequently, interact with other expressed characters. Characters that
do not exist are “not expressed” and simply do not participate in the
interactions of the expressed characters. This representation may be
further extended with the addition of non-coding characters that are not
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Table I. PGA1 character assignment in a five
user resource allocation problem.

User U Character assignment, char(U)

Uy a
U» b
Us c
Us d
U5 e

associated with any parameters. These non-coding regions are beneficial
for fine tuning purposes.

3.1. PGA1l

Initial examination of this representation suggests that it is a perfect
fit for resource allocation problems. Suppose we have a common pool
of resources that must be divided among n users. With a PGA, we
would use an n-character alphabet with one character assigned to each
user. Each individual, regardless of length represents the total available
resources. The proportion of each user’s character on an individual
gives the percentage of resource allocated to each user. We will call
this representation strategy PGAL.

For example, given a five user resource allocation problem, a PGA
would require a minimum alphabet size of a = 5. We can assign char-
acters as shown in table I. The percentage of total resource allocated
to each user, U;,7 = 0, ...,a — 1 is calculated by the equation

number of char(U;) on individual

P, i) = indivi
rGa1(Ui) length of individual

As a result, the sum of all of the allocated resources must equal 1.0
(100% of the resources). A typical individual such as

accaebbdbeeddbabbddebaabbdddebebadbecabebbedaacced

would generate the allocations shown in table II. This individual is 50
characters long. Note that the location of the characters play absolutely
no role in the evaluation of the individual. Thus, multiple individuals
may generate the same solution and the individual

aaaaaaaaabbbbbbbbbbbbbbbcccccdddddddddddeeeeeeeeece

encodes the exact same solution as the first individual above.
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Table II. Allocation of resources specified by
example individual of length 50.

User U Number of char(U) Allocation

Uy 9a’s 0.18
U, 15 b’s 0.3
Us 5c’s 0.1
Us 11 d’s 0.22
Us 10 e’s 0.2

Table III. PGA2 character assignment in a five value problem.

Value V. postive_char(V) mnegativechar(V) Vmin Vinae

Vi A a 0 10

Ve B b 0 10

V3 C c 0 10

Va D d 0 10

Vs E e 0 10
3.2. PGA2

Unfortunately, many problems cannot be represented as pure resource
allocation problems where the sum of the components is constrained to
a fixed value. As a result, additional modifications must be made to the
PGA representation to encode solutions for other types of problems.
We focus on the common problem format involving a search for a
vector of values (either integer or floating point). Given a problem in
which we are searching for ¢ = 5 parameter values, V;,7 =0, ...,a—1 and
the range of each value is given by V; jnin and V; jna.. We define a second
PGA strategy called PGAZ2 in table III. The number of “positive” and
“negative” characters on an individual are used to calculate

positive_char(V;)

1 2 =
pet(Vi) positive_char(V;) + negative_char(V;)

where 7 = 0,...,a — 1 and 0.0 < pct(V;) < 1.0. The value of each
parameter is calculated by the equation

PPG’A2(Vz’) = Vvi,mz'n +pCt(V;') X (‘/i,maz - Vz,mm)
A typical individual of length 50 such as

AccBdDeeEbAbBDEccaAAAEebbEEECCDbbbABCDEedcbaAAddbA
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Table IV. Allocation of resources specified by example individual of length
50.

Number of Number of Expressed
Value V' postive_char(V) mnegative_char(V)  pct(V) value
i 9 A’s 2 a's 9/(9+2) 8.18
Va 3 B’s 9b’s 3/(3+9) 2.5
Vs 3C's 5 c's 3/(3+5) 3.75
Va 4 D’s 4d’s 4/(4 +4) 5.0
Vs 7E’s 4e's 7/(7T+4) 6.36

would generate the parameter values shown in table IV. As with PGA1,
the evaluation of a PGA2 individual is completely independent of the
arrangement of characters. Thus, the individual

AAAAAAAAA2aBBBbbbbbbbbbCCCcccccDDDDddddEEEEEEEeeee

also evaluates to the values shown in table IV.

3.3. PGA3

We attempt to simplify PGA2 by modifying the equation for pct(V;).
In the new method called PGA3,

positive_char(V;)
negative_char(V;)

if positive_char(V;) < negative_char(V;)
pet(V;) =

negative_char(V;)
positive_char(V;)

where i = 0,...,a — 1 and 0.0 < pct(V;) < 1.0. The value of each
parameter is still calculated by the equation

PPGAS(VZ') = ‘/i,min —f—pCt(V;') X (‘/i,maz - Vz,mm)
With PGA3, both individuals
AccBdDeeEbAbBDEccaAAAEebbEEECCDbbbABCDEedcbaAAddbA

otherwise

AAAAAAAAAaaBBBbbbbbbbbbCCCcccccDDDDddddEEEEEEEeeee

generate the parameter values shown in table V. Initial experiments
suggest that the behavior of PGA2 and PGA3 are very similar.
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Table V. Allocation of resources specified by example individual of length
50.

Number of Number of Expressed
Value V' postive_char(V) negative_char(V) pct(V) value
i 9 A’s 2 a’s 2/9 2.22
Va 3 B’s 9b’s 3/9 3.33
V3 3C’s 5 c’s 3/5 6.0
Va 4 D’s 4 d’s 4/4 1.0
Vs 7E’s 4e’s 4/7 5.71

3.4. ADDITIONAL EXTENSIONS

The adaptability of all three of the PGA variations described above
can be further enhanced in two ways.

3.4.1. Variable length individuals

Because of the location independence of the PGA representation, it can
easily be modified to work with variable length individuals. Variable
length individuals allows a PGA to control the amount of computa-
tional effort it expends during a run. Using shorter individuals requires
less computational effort. In addition, this modification would allow
a PGA to control the resolution at which it encodes values. Longer
individuals would allow finer resolution. The minimization of compu-
tational effort would likely need to be balanced against the need for
adequate resolution.

3.4.2. Non-coding regions

Non-coding regions can easily be added by including, as part of a
PGA’s alphabet, characters that are not assigned to any parameter
values. These characters would not be directly involved in encoding
information on an individual; however, they may affect the values rep-
resented by an individual by changing the overall length of individuals.
Non-coding regions are expected to help a PGA “fine-tune” the values
encoded on its individuals. In a fixed length system where the length
is unsuitable for the required resolution, non-coding regions may be
introduced to compensate for suboptimal length. This effect is expected
to be more prevalent in PGA2 and PGA3 than PGA1 because of the
nature of the problems on which PGA1 can be applied.
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Table VI. Possible solutions using
a PGA with binary alphabet and
length 8.

Number of 0’s Number of 1’s

8 0
7 1
6 2
5 3
4 4
3 5
2 6
1 7
0 8

4. The issue of resolution

We would like to compare the performance of the PGA with that of
a CGA; however, their fundamentally different representations make it
difficult to determine what would be a fair comparison. For example, a
CGA using a binary alphabet and individuals of length 8 can encode
28 = 256 different solutions. Table VI shows that a PGA using the
same alphabet and length can encode 9 unique solutions. Obviously it
will be easier to find a solution with the PGA; however, the PGA is
representing a much smaller and coarser solution space, i.e. trying to
solve an easier problem. Increasing the alphabet size of the PGA to
three increases the number of unique solutions to 45 (see Table VII).
Obviously, the selected length and alphabet size affects the resolution
of the solution spaces that each algorithm can represent.

We assert that, to fairly compare two search algorithms, they must
search for a solution from among the same number of potential solu-
tions, that is, within equal sized solution spaces. As a result, we will
focus on determining metrics that would allow a CGA and a PGA to
represent a problem at the same resolution. To do so, we analyze the
effects of the multiset approach of the PGA on its genotype-phenotype
mapping and on the formation of neutral classes; give an equation for
determining the CGA and PGA solution structures required to repre-
sent the same solution space; and show that if we use those sizes in a
comparative random sampling analysis, the probabilities of finding a
solution, on average, are the same for a CGA and a PGA.
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Table VII. Possible solutions using a PGA with alphabet size 3 and length 8.
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4.1. NOTATION

We will use the terms individual and genotype interchangeably to refer
to fixed length strings over an alphabet. Typically, CGA individuals
are strings over a binary alphabet while PGA individuals are strings
over a higher-arity alphabet.

We introduce the following notation: search (genotype) space, G 5y =
{gi}, the set of all genotypes, g;, of length [ over alphabet ¥; and
solution (phenotype) space, P = {p;}, the set of phenotypes, p;, which
are strings of length  for a CGA and multisets' of length [ for a PGA.
The mapping between spaces is M : G, sy — P, hence p; = M(g;)

Let A be a CGA with individuals of length [4 over an alphabet
Y4 ={01,09,...,0n,}. Let the cardinality of the alphabet be |X 4| =
n4. Let A’s search space, solution space, and mapping be denoted by
G 24> Pa, and M 4, respectively.

! Multisets—also known as bags—denoted on this paper by {|,,, |}, are analogous
to sets, except that they may contain multiple copies of identical elements. The
number of occurrences of an element in the multiset is called the multiplicity of the
element.
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Similarly, let B be a PGA with length [z and alphabet ¥5 = {01, 09,. ..

with cardinality of |£g| = np. Let B’s search space, solution space and
mapping be denoted accordingly by G, s, Ps, and Mz.

4.2. THE PGA MAPPING

For the CGA, A, the search space and the solution space are the same
size, (n A)l““, and the genotype-phenotype mapping, M 4, is trivial—
one-to-one and onto from strings to strings—in fact, the identity map-
ping. For the PGA, B, the size of the search space is similarly (ng)'®,
but the genotype-phenotype mapping, Mg, will map strings onto mul-
tisets instead of strings to strings. This mapping is, in general, many-
to-one and onto, and leads to a solution space that is smaller than
its corresponding search space. The number of elements in each of
these multisets is the same as the genotype length. The mapping, Mp,
represents the essence of the PGA idea: every string is mapped accord-
ing to the multiplicity of its elements regardless of the arrangement
of the elements. In general, multiple strings will map onto the same
multiset. The only exceptions are those strings that contain only one
kind of element; i.e., for [ = 4 and ¥ = {a, b}, the string “aaaa” is
the only one that maps onto the multiset {|a, a,a,a|}, while all of the
following strings: “aaab”, “aaba”, “abaa”, and “baaa”, map onto the
same multiset, {|a,a,a,bl|}.

Using basic combinatorics, we can calculate the exact number of
strings that map to each multiset as function of their multiplicities. We
can also calculate the total number of such multisets for a given search
space which is precisely the size of the PGA phenotype space.

Let 71(p;) denote the number of strings on the genotype space which
map to the multiset p;. It is easy to show that:

npj) = g ls)!

[1(pils)!

(1)

=1
where, p; = {[<j1,S2, - -+ »Sjks - - - Sjig |} s the 4™ multiset in Pg; Sjk €
Yp for k =1,...,15; [pj|s; denotes the multiplicity (number of occur-
rences) of o; in the multiset pj; and 0; € £ = {01,092,...,0n,}-

The total number of multisets produced by the mapping, Mg :
Gug.sg F P, is (HB—ZB_I)'
As the set of all the multisets obtained by My constitute the phenotype
space Pp, the size of this space, denoted |Pg|, is given by:

Pl = (”B s 1) (2)

g
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4.3. NEUTRAL CLASSES

A neutral class is defined as the set of genotypes that maps to the same
phenotype. The number of neutral classes as well as their corresponding
sizes are determined by the mapping between spaces, M. Each element
of the phenotype space has a unique associated neutral class and vice
versa. Note that the set of neutral classes is a partition of the genotype
space.

For the PGA mapping, Mg, the size of the neutral class associated
with the phenotype p; is given by 7(p;) on Equation (1), and the num-
ber of neutral classes formed on the genotype space by this mapping,
equals the size of the phenotype space, |Px|, given by Equation (2).

4.4. RESOLUTION ANALYSIS

Let us consider a problem in which we are searching for a single param-
eter value with a given resolution, i.e., searching for a number between
0 and 100 with a resolution of 0.1. In this problem, the solution space
would need to consist of at least 100 x 10 = 1000 elements to accomo-
date the required resolution of the search. As a result, an evolutionary
algorithm applied to this problem must be able to represent at least
1000 elements in its solution space to find an accurate solution. In order
to fairly compare two algorithms set to solve this problem, both of them
should have the same solution space size.

Therefore, in order to compare CGA A and PGA B, their solutions
spaces should be of the same size, that is:

Pal = [Psl (3)
The size of the phenotype space for CGA A is:

[Pal = (na)" (4)
We use (2) and (4) to rewrite (3) and obtain:

(na) = (”B s - 1) (5)

B
Equation (5) is important because it describes the relationship between
the lengths and alphabet sizes of an arbitrary CGA and PGA that
would ensure resulting solution spaces of equal size. We will use this
equation to set up our comparative experiments on Section (6).
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4.5. STATISTICAL ANALYSIS

Consider the point ps € P to be a distinguished point on the phenotype
space. Let us call it the solution point.?

Let gs € G be a point in the search space that maps to ps. Let N (ps)
be the set of all such points, g;; € G , that map to ps. Therefore, N(ps)
is the neutral class associated with p;.

Since there is exactly one neutral class associated with each element
of P, we have |P| neutral classes. The number of elements in each
neutral class, |V (p;)|, depends on the specifics of the mapping M.

4.5.1. Probabilities for finding a solution
The probability of selecting a genotype that maps to p; by random
sampling is given by:

Number of genotypes that map to p;
Pr(ps) =

Total number of genotypes

which can be rewritten as:

|N (ps)|
Gam|
where [N (ps)| is the size of the neutral class associated with p.

Let us consider again CGA A and PGA B. jFrom the previous
discussion we know that the number of the neutral classes is the same
as the number of elements in P. As a result, |P4| and |Pg| give us the
number of neutral classes for A and B.

The number of strings in each class for A is trivial to compute. Since
the mapping, M 4, is one-to-one and onto, there is exactly one string in
each class. For B, the size of a neutral class is given by Equation (1) and
depends on the multiplicity of the associated multiset. This multiplicity
is the same as the multiplicities of each of the strings in the class defined
by the multiset. Hence, we can expand out definition of 7 to account
for multisets as well as for strings in the following way:

(I)!

n(gsy) = g

[1(gs.l0.)!

=1

Pr(ps) =

(6)

(7)

where g5, € Gy .5y
The size of the neutral class associated with p; is given by:

IV (ps)| = n(gs,) (8)

2 This point represents the phenotype with highest fitness, given a fitness function
defined over the space P
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We use Equation (6) to obtain the probabilities Pr 4(ps) and Prg(ps):

P?"A(ps) = (’]’),Al)l’A (9)
Pra(p,) = 1) (10)
(ns)™®

4.5.2. The PGA Hypothesis
In order for PGA B to have a better or equal probability of finding a
solution (ps) than CGA A, the following inequality must hold:

Pri(ps) > Pra(ps) (11)

We call Equation (11) the PGA hypothesis. It simply states that the
probability of randomly selecting a genotype that maps to the solution
is equal or higher in a PGA than in a CGA.

Substituting (9) and (10) into (11) and rearranging the terms we
get:

(np)'®
(na)™
which is a general condition for the PGA hypothesis to hold. This equa-
tion depends on parameters such as length and alphabet cardinality, as
well as depends on the choice of the desired solution p;.

Observe that for the case in which A and B have the same sized
search space, |G , =) = |Gug.cp |, Equation (12) reduces to:

n(gsi) =1 (13)

which always holds. Hence, in this case, subject to the choice of ps, a
PGA always has a better or equal chance of finding a solution than a
CGA.

In the case where |P 4| = |P4l|, Equation (12) reduces to:

n(gs) = (12)

ng)'’s
77(95k) > %

s

(14)

In this case, either the PGA or the CGA could have the advantage,
depending on the choice of p;.

4.5.3. Awverage probabilities over all solutions

Since the previous results depend heavily on the choice of p,, let us
analyze the average of all possible choices of p;. Note that p, affects
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the above equations by changing the size of the associated neutral class.
Consequently, to analyze the average behavior of all possible choices of
ps, we will compute the average size of all of the neutral classes (all
possible choices of p;).

Let 7} denote the average size of all neutral classes for a given search
space:

[77(919)]
. {gr [Mp(gr) # Mp(g:) Vr#t}
n= (nB—HB—l)

]

Since the sets of all neutral classes are a partition of the search space,
the summation of all of the neutral class sizes is the size of the space:

[U(gk)] = ‘g<13,23>|
{gr | Mp(gr) # Mp(gt) ¥ r#t}

Thus, 7, the average size of all neutral classes over a search space, is
given by the following equation as function of the parameters defining
the space itself:

(ng)'"®

0= tis=Ty
("5

(15)

At this point, we can replace in our previous equations the specific
size of a neutral class, 1, with the average size over all possible neutral
classes in a search space, 7, to yield results that are independent of p;.

Replacing 1 with 7) on Equation (12) and rearranging terms we
obtain the condition for the PGA Hypothesis to hold in the average
case:

(na)4 > ( (16)
Equation (16) is independent of the choice of p; (solution point) because
7 has been averaged over all possible choices of p,. Note from this
equation that the PGA hypothesis will hold if and only if:

ng+lg—1
Ip

Ps| < [P4l (17)

Equation (17) tells us that, in order for a PGA to have an advantage,
the PGA solution space cannot be larger than the CGA counterpart.
But equation (3) states that both solution spaces should be equal for a
fair comparison. Hence, the probability that a PGA will find a solution
is, on average, equal to the probability that a CGA will find a solution
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when both solution spaces are equal in size. In order for a PGA to have
a greater probability of finding a solution, the PGA must be searching
in a solution space that is smaller than that of the competing CGA.
Equation (13) considers the case of |G , » )| = |Gy, uy |- Using the
average value of 7, 7}, we obtain:
7>1
Replacing 7 with its value from Equation (15), we get:
s
(ns)®
(nB+lB—1) =
I
This equation holds only for the inequality. Thus, the PGA hypothesis
holds as an inequality. As a result, when a PGA and CGA have search
spaces of same size, a PGA will have, on average, a better chance of
finding a solution than a CGA.
Equation (14) examines the case where |P4| = |P4|. Using 7} we can
now obtain:
(ng)'"®

(")

2

(ng)'® (ng)'®
(retlEml) T (retls

In this case, the equation holds only for the equality. Thus, the PGA
hypothesis holds as equality. With solution spaces of the same size, a
PGA has, on average, similar chances of finding a solution as a CGA.

5. Biological support

The primary inspiration for the PGA comes from the biological idea of
gene expression. There is a fundamental difference in what and how
information is encoded in biological evolutionary systems and that
encoded in computational evolutionary systems. Computational encod-
ings tend to focus on the order of information. Biological encodings also
emphasize the existence of information.

Ordered encodings are, of course, an important method by which
biological systems store and express information. Proteins are defined
by the order of their component amino acids. Genes are defined by the
order of their component DNA molecules. The order in which genes
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appear on a genome can be important, for example, the mammalian
(B-globin gene cluster consists of one embryonic, two fetal, and two
adult genes arranged on the chromosome in the order in which they
are expressed during the development of the organism [35].

From the overall genome viewpoint, however, the job of a genome is
to specify the collective and relative amounts of genes needed within a
cell. The expressed genes produce proteins which interact to create life.
The type and amount of protein available for interaction directly affects
the expressed phenotype of a cell or organism. Biological genomes are
not divided into fields, each of which is assigned to produce a specific
protein. Rather, they are more open-ended, with genes appearing where
ever a viable encoding is found. The number of genes that comprise
a solution is bounded only by the genome size and the number of
different “encodings” is virtually endless. This viewpoint suggests that
the existence or nonexistence of a gene has as much or more impact
than the location of a gene. After all, the location of a gene can only
matter if it exists.

What is interesting to us is the fact that information is encodable
purely as variations in the number of genes and completely indepen-
dently of any ordering. Presumably, this is possible only if there are
external rules that govern the interaction of the components produced.
These rules need not be complex to produce interesting behavior, as
is evident from our simple PGA equations. In our arguments here, we
make the generalization that the actual locations of the genes do not
affect their expression. In reality, the process is much more complicated,
and gene location and gene regulation add a great deal of complexity to
this system. We assert that the primary factor here is the existence or
non-existence of a gene on a genome. The regulation of gene expression
and gene location is secondary factor that extends the complexity of
living systems to the next level, but whose analogy to GAs we will save
for future work. For now, we will focus only on the analogy to simple
gene expression.

There are clear examples in biology which indicate that the exis-
tence of a gene allows it to produce a required protein regardless of its
location. Curtis [6] gives an example where a genetic defect (deletion) is
masked by an extra copy of the missing gene on a different chromosome.
The defect is expressed in the offspring which do not have an extra
copy of the missing gene, possibly due to receiving that part of the
chromosome from the other parent. Studies on the expression of X
chromosome genes support the importance of accurate gene expression.
Female mammals have two X chromosomes to male mammals’ XY
chromosomes. To prevent females from receiving a double dosage of

paper.tex; 28/02/2002; 15:16; p.21



22

X chromosome genes, one X chromosome is suppressed in all female
cells [3, 28].

With strong roots in genetic and evolutionary biology, the GA is es-
sentially an abstract model of the process of evolution. As a result, GA
researchers often look to biology for inspiration and direction. There
have been concerns about random, haphazard addition of biologically-
inspired features to a GA [7] ultimately producing a patchwork al-
gorithm consisting of arbitrarily selected, sometimes misinterpreted
components. Instead of a new addition or modification to the CGA,
what we propose here is more of a complete revision of GA problem
representation. In a sense, much of the GA community has “converged”
on order-based encodings due to the success and straightforwardness
of this encoding method. We are attempting to take a step back via
“hypermutation” and begin exploring a new branch of representations
that focus on gene expression rather than gene order.

6. Experimental details

We compare the three variations of the PGA described in section 3
with a CGA. Specific questions that we address in our experiments
include:

1. How does a PGA compare to a traditional CGA? Can a PGA
perform at least as well as a CGA?

2. Does a PGA use non-coding regions as a means of “fine-tuning”
the values it encodes?

3. Can a PGA regulate the length of its individuals to minimize com-
putational effort while maximizing performance?

4. Does a PGA encourage the formation of building blocks?

6.1. TEST PROBLEMS

We study three types of problems in the experiments described here.

1. Resource allocation
2. Number matching
3. Symbolic regression
All of these problems require a GA to find five values.

The resource allocation problem is a search for a series of values
that sum to a predefined value. This type of problem appears to be a
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Table VIII. GA parameter settings.

Population size : 200

Maximum number of generations : 500

Selection method :  tournament

Crossover type :  two-point (fixed len),
homologous (variable len)

Crossover rate 1.0

Mutation rate :0.01, 0.005

perfect fit for the PGA encoding. We compare the behavior of PGA1
with a CGA on this problem.

The second two problems search for a series of numbers that do not
have to sum to a predefined value. Many real world problems can be
mapped to one of these general problem types. In number matching,
all values have equal weight. In symbolic regression, some values may
have greater affect on fitness. We compare both PGA2 and PGA3 with
a CGA on these two problems.

6.2. GA CONFIGURATION

Table 6.2 gives the parameter setting used in these experiments. Each
experiment was run 100 times and the results averaged over all runs.

Our CGA uses a binary representation consisting of a field of eight
bits for each of the five values for a total length of 40 bits. We can use
Equation (5) from Section 4 to calculate the appropriate PGA lengths
for our comparisons. For each of our five values, we have n4 = 2 and
l4 = 8, as our CGA is binary and eight bits are allocated per value.
For the PGA we have ny = 2 as each parameter is represented with
an alphabet size of two 3. Entering these values into Equation (5) and
solving for Iz, we obtain Ig = 255. Therefore, 255 is the equivalent
length that a PGA would require to encode a single parameter value
with the same resolution as the CGA. As a result, the PGA represen-
tation would need a genome length of 255 x 5 = 1275 to encode the
same resolution as the CGA.

In addition to the simple PGA representation, we also test exten-
sions which include non-coding regions and variable length individuals.
We test a total of six variations of each PGA:

3 This is clear for PGA2 and PGAS3 since the alphabets are separate; however

for PGA1 we also have two groups of characters for each value: one distinguished
character and one group undistinguished characters—the rest of the alphabet.
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PGA-40: Simple PGA with fixed length individuals. The length of
the individuals is the same as the length of the individuals in the
CGA (40 bits).

PGA-255: Simple PGA with fixed length of 255 bits. As the full
resolution of the PGA requires a genome length of 1275, PGA-255
is still somewhat penalized with respect to resolution; however, this
PGA at least has the resolution of a single CGA field. The location
independence of the PGA allow us to overlap all five values on the
same genome.

PGA-40-nc: PGA with fixed length individuals and non-coding re-
gions. Length is same as in PGA-40. One or more non-coding
characters are added to the PGA alphabet.

PGA-255-nc: Same as PGA-40-nc with length of 255.

PGA-var: PGA with variable lengthed individuals. The maximum
allowed length is set at 2048 to ensure that the PGA would have
as much resolution as it would need. Note that this value is bigger
than the required length of 1275. No parsimony pressure is applied
unless otherwise specified.

PGA-var-nc: PGA with variable lengthed individuals and non-coding
regions.

6.3. RESOURCE ALLOCATION

The resource allocation problem involves the allocation of a fixed pool
of resources among five users.

The PGA1 encoding is described in section 3.1. A CGA individual
is decoded by first calculating the binary values encoded in each field.
Each value is then divided by the sum of all of the values to produce a
proportion between 0.0 and 1.0.

Given a = 5 target values or proportions, 75,7 = 0,...,a — 1 where
>T; = 1.0, and a users U;,i = 0,...,a — 1, the encoded proportion
assigned to each user is given by Ppga1(U;) (see section 3.1). We first
calculate the ratio of each corresponding pair:

#ﬁ(m) if T; < Ppga1(U;)
ratio(i) = S
PGA1 i

P otherwise
]

This value gives an indication of how close each encoded value is to the
corresponding target value. The fitness of an individual is the average
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CGA vs PGAL: Resource allocation
1 T T T T T T
3 % %
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Best fitness
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CGA PGA-40 PGA-255 PGA-40-nc PGA-255-nc PGA-var PGA-var-nc

Figure 8. CGA -vs- PGA1 on resource allocation: Fitness of best solution found
averaged over 100 run and 95% confidence intervals.

of all ratios: .
fitness = —220 ratzo(z)'
a

A perfect match gives the maximum score of 1.0.

6.3.1. Randomly generated target allocations

Our first experiment simply compares the ability of a CGA and PGA1
to find a set of target proportions. To eliminate any unexpected bias,
we randomly generate a set of target values, T; where . T; = 1.0,
at the beginning of each run. As a result, each of the 100 runs that
make up this experiment are searching for a different set of target
values. Figure 3 shows the average best solutions obtained from each
algorithm tested with 95% confidence intervals. The CGA performs
well, with an average best fitness of 0.9857. All of the PGA variations
except for the two using length 40 perform as well or significantly
better than the CGA. PGA-255 performance is consistent with CGA
performance despite its resolution penalty. Enhancing the PGA with
either non-coding regions or variable length appears to significantly
improve performance. Although the PGAs with length 40 performed
significantly worse, they still provided respectable average fitnesses of
0.9382 and 0.9495. Table IX shows detailed results from this experi-
ment. In addition to the best fitness value, we also track the number of
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Table IX. Results of PGA1 versus CGA on finding randomly generated allocation
values. Average (and standard deviation) over 100 runs.

Algorithm Best fitness Hits > 0.99  Genome length ~ Time in sec.
CGA 0.9857 (0.0120) 53 40 13.96 (1.24)
PGA-40 0.9382 (0.0483) 2 40 12.08 (0.65)
PGA-255 0.9869 (0.0110) 59 255 15.75 (4.38)
PGA-40-nc 0.9495 (0.0496) 1 40 12.48 (1.02)
PGA-255-nc  0.9955 (0.0063) 94 255 16.12 (3.66)
PGA-var 0.9941 (0.0189) 91 1813.56 (585.68) 46.86 (16.77)
PGA-var-nc  0.9963 (0.0135) 95 1810.30 (606.37)  47.53 (13.72)

runs out of 100 in which a best fitness of 0.99 or higher was found
— the number of “hits”. The CGA finds fitness values above 0.99
in 53 out of 100 runs. Except for the PGAs of length 40, all other
PGA runs are better able to achieve 0.99 fitness than the CGA. The
variable length PGAs evolve significantly longer individuals than the
fixed length values tested. These lengths, however, are not unreason-
able given the actual required resolution of 1275. Applying parsimony
pressure, as described in [4], results in average lengths that are about
half of those shown above with essentally the same average best fitness
value. All of our runs ran for 500 generations. The average clock time
(in seconds) increases only slightly when genome length is increased
from 40 to 255. Variable length PGAs, however, require significantly
longer time to complete 500 generations of evolution.

6.3.2. Formation of building blocks
One of the expected advantages of the PGA encoding is that its com-
plete location independence would encourage (or, at the very least, not
impede) the formation of building blocks of related characters. Hypo-
thetically, building blocks may be formed in two ways in the PGA. First,
related characters (all of a particular character) are arranged in close
proximity to minimize the chance of disruption by crossover. Second, all
copies of each character are spread evenly across the entire individual
making any particular segment of an individual essentially a building
block (a miniature version of the full individual, albeit with coarser
resolution). We examine individual PGA runs in detail to determine if
such building block formation does occur.

We calculate the center of gravity and range for every character
on every individual. The center of gravity (CoG) of a character is
the average of the locations of all instances of that character on an
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Center of gravity: all characters
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Figure 4. Center of gravity of characters on a population of PGA individuals.

individual. The range of a character is delimited by the two end-most
copies of the character. We normalize the positions on an individual to
range from 0.0 to 1.0 where 0.0 refers to one end of the individual and
1.0 refers to the opposite end. CoG values will then fall in between 0.0
and 1.0. Figures 4 and 5 show data from generation 500 of a PGA run.
The x-axis of these plots indicate each individual from the generation.
The y-axis indicates position on an individual with normalized position
values (positions range from 0.0 to 1.0). The Figure 4 gives the CoGs
of all five characters in this PGA. The Figure 5 shows the CoG and
range of one specific character. By generation 500, all CoG values have
evolved close to the center of the individuals. The range of the charac-
ters appears to be spread out over the entire individual. These results
indicate that a PGA tends to form the second type of building block
where characters are distributed across an entire individual. Examina-
tion of specific individuals supports this conclusion. Figure 6 shows an
example individual from a PGA run. Similar, repeated sequences are
aligned for easier recognition. A high degree of repetition and many
similar building blocks are found throughout the individual. A shift in
the alignment used in figure 6 by one character produces an entirely
new set of building blocks containing approximately the same set of
characters.
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Center of gravity and range: character a
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Figure 5. Range of characters on a population of PGA individuals.

6.3.3. Regulation of length and resolution
To further investigate the PGA’s ability to regulate length and res-
olution, we next perform an experiment with specific target values
where the target allocations have the ratio 1:2:4:2:1. The goals of this
experiment are to test whether a PGA allocates an appropriate number
of characters to account for the desired resolutions and to test whether
a PGA will vary or minimize length in response to the resolution of the
target values. The minimum number of characters required to encode
this distribution in a PGA is 10 characters. As a result, the 40 length
used in our fixed experiments should be able to find a perfect solution.
Table X shows the results from this experiment. The CGA is only
able to find solutions above 0.99 fitness in 80% of its runs while all
PGA runs were able to find solutions above 0.99 fitness. PGA-40 easily
found the optimum distribution in all runs. Because a length that is a
multiple of ten is required to achieve the optimum distribution, PGA-
255 was not able to achieve a fitness of 1.0; A standard deviation of
zero and examination of individual solutions, however, indicate that
PGA-255 found the best possible solutions for its given length. Adding
non-coding regions to PGA-255 alleviates this problem: PGA-255-nc
finds all optimum solutions. Variable length PG As, again, evolve signifi-
cantly longer individuals but application of parsimony pressure reduces
average lengths to around 240. Despite the large average length, two
PGA-var runs generate solutions of length 10.

paper.tex; 28/02/2002; 15:16; p.28



29

dcbdcfcdcfccbebecedgf
jbbcdhcddbcccdbdhgdbecccdbdhgdbeccbedibbehhg
jacbccgcbdccdabiccdgdgbbefecdchdcdecdecbbechdgecdidhedheccgebhejidhegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbededd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdedeegect
jcbbhgcdgecgbbdddcdbededdjhgiccgebeecgeccecgebedecedecdeegect
jcbbhgcdgcgbbdddcdbededdjhgiccececbeegeccecgebedecedecdeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdedeegect
jcbbhgcdgecgbbdddcdbededd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdecdeegect
jcbbhgcdgcgbbdddcdbedecddjhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdecdeegect
jcbbhgcdgecgbbdddcdbedecddjhgiccgebedccdedeegect
jcbbhgcdgecgbbdddcdbededdjhgiccgebecgeccecgebedeccdcdeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdecdeegect
jcbbhgcdgecgbbdddcdbedecddjhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedcdd jhgiccgebedccdecdeegect
jcbbhgcdgecgbbdddcdbedecddjhgiccgebedccdedeegect
jcbbhgcdgecgbbdddcdbedecddjhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdecdeegect
jcbbhgcdgecgbbdddcdbedecddjhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdecdeegect
jcbbhgcdgcgbbdddcdbededd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebecgecccgebedeccdecdeegect
jcbbhgcdgcgbbdddcdbededdjhgicccecbeecgeccecgebedececdecdeegect
jcbbhgcdgcgbbdddcdbededd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbededd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbededdjhgiccccbecgecccgebedececdecdeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbededdjhgiccececbeecgeccecgebedecedecdeegect
jcbbhgcdgcgbbdddcdbedecdd jhgiccgebedccdedeegect
jcbbhgcdgcgbbdddcdbededd jhgiccgebedccdedeegect
jcjbhgcdgcgbbdddcdbedecddjhgiccgebecgecccgebedeccdecdeegect
jcbbhgcdgcgbbdddcdbededdjhgicceccbeecgeccecgebedcecdecdeegect
jcbbhgcdgcgbbdddcdbededd jhgiccgebedccdedebgect
jcbbhgcdgecgbbdddcdbededdjhgiccgebecgeccecgebedeccdecdeegect
jcbbhgcdgecgbbdddcdbededdjhgiccgebecgfcccgebedeccdcdeegect
jcbbhgcdgcgbbdddcdbededd jhgiccgebecgecccgebedeccdecdeegecd
jcbbhgcdgecgbbdddcdbedcedijhgiccgebgebeccfbedbdhgbhfce
jcbacdcdhegccffcbbhdcdjdgbecccccjgjcifbe

Figure 6. Example of individual with repeated sequences.
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Table X. Results of PGA1 versus CGA on finding fixed resolution allocation values.
Average (and standard deviation) over 100 runs. A hit is a run that achieves the
fitness of 0.99 or higher. All fitnesses are 0.95 or higher.

Algorithm Best fitness Hits > 0.99  Genome length  Time in sec.
CGA 0.9911 (0.0009) 80 40 5.23 (0.45)
PGA-40 1.0 (0.0) 100 40 3.34 (0.48)
PGA-255 0.9922 (0.0) 100 255 8.27 (0.45)
PGA-40-nc 1.0 (0.0) 100 40 3.76 (0.43)
PGA-255-nc 1.0 (0.0) 100 255 8.36 (0.48)
PGA-var 0.9997 (0.0003) 100 1460.33 (849.38)  53.62 (8.87)
PGA-var-nc 1.0 (0.0) 100 1129.86 (933.11)  50.63 (14.96)

These results indicate that, given a problem whose resolution is
achievable with the length used by a PGA, that PGA will able to find
a perfect solution and will outperform a CGA. Furthermore, a PGA
that has the ability to adjust its resolution, e.g. by varying length or
amount of non-coding regions, will take advantage of these mechanisms
to improve its solutions. Parsimony pressure can be used to minimize
solution length with very little fitness penalty.

The suitability of the PGA to resource allocation problems is clearly
demonstrated by the above studies. PGA is competitive and often out-
performs a CGA on such problems. Most problems, however, cannot
be encoded or interpreted as a resource allocation problem. Thus for
the PGA to be useful, we must be able to apply it to other types of
problems. In the next section we investigate PGA performance on two
problems onto which many real world problems may be mapped.

6.4. ADDITIONAL PROBLEMS

There are many problems which may be described as a search for a
vector of values. These values may be completely independent or may
have dependencies among themselves. We now examine PGA perfor-
mance on two representative problems. The first problem is a simple
number matching problem in which we search for a set of five indepen-
dent numbers. The second problem is a symbolic regression problem in
which we search for a set interdependent numbers. We test two PGA
encodings called PGA2 and PGA3 (described in section 3.2 and 3.3)
on both of these problems.
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6.4.1. Number match

The number match problem is a search for ¢ = 5 independent val-
ues. The a independent target values are randomly generated at the
beginning of each run so that each run searches for a different set of
values.

The fitness function for this problem is the same as the fitness func-
tion for the resource allocation problem. Given a target values, T;, and
a values decoded from a PGA individual, Ppga(V;),7i =0,...,a — 1, we
first calculate the ratio of the smaller value divided by the larger value.

Proay i Ti < Prga(Vi)
ratio(i) =
PP%;(VH otherwise
The fitness of an individual is the average of all ratios:

-1 ..
fitness = —?:0 ratio(i)
a

Again, a perfect match gives the maximum score of 1.0.

6.4.2. Symbolic Regression
Given a set of p data points, d;,7 =0, ...,p — 1, the symbolic regression
problem is a search for a = 5 coefficients that, when plugged into the
equation

f(z) = az® + bz + ¢ + d cos(z) + esin(z),
most closely approximate the target equation. Instead of trying to
match the encoded coefficient values to target values, the fitness func-
tion is calculated from the difference between the target data points
and the function values generated using the encoded coefficient values.
The ratio(i) at each data point is

i if dy < f(x)
ratio(i) =
=2 otherwise

The fitness is the average of all ratios:

a—1 s (7

g Tatio(t
fitness = L().

a

A perfect match gives a maximum score of 1.0. This problem differs
from the number match problem in that the a values are interde-
pendent. Changes in a single value can affect the impact of other
values.
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CGA vs PGA2: Number match

1 T T T T é T T

0.99 - B

0.98 - .

0.97 - B

0.96 - ]

0.95 - B

Best fitness

0.94 - B

0.93 - .

0.92 - B

091 - ]

09 1 1 1 1 1 1 1
CGA PGA-40 PGA-255 PGA-40-nc PGA-255-nc PGA-var PGA-var-nc

Figure 7. CGA -vs- PGA2 on number match: Fitness of best solution found averaged
over 100 runs and 95% confidence intervals.

6.4.3. Results

Figure 7 and 8 compare the average best fitness and number of hits
over 100 runs of a CGA and PGAZ2 variations on the number match
problem. In both comparisons, PGA2 significantly outperforms the
CGA only when it has length 255. A length of 40 results in a significant
performance decrease; however, fitness values still reach well above 90%.
The addition of non-coding regions has little effect. A variable length
PGA2 performs somewhat better than PGA-40, but remains worse
than the CGA. The fact that variable length is less beneficial with
PGA2 than PGA1 is likely due to the more complex mapping from
character proportions to function values in PGA2.

Figures 9 and 10 compare the average best fitness and number of
hits over 100 runs of a CGA and PGA3 variations on the number match
problem. Again, the best PGA performance occurs when PGA3 has
length 255. Those PGA3 runs reach equivalent fitness values as the
CGA and slightly outperform the CGA in hit count. PGA3 with length
40 performs significantly worse as do the variable length PGA3s.

Figures 11 to 14 show the corresponding data for the symbolic
regression problem. The relative performances of the algorithms and
the CGA performances are similar on both the symbolic regression
and number match problems. All of the PGAs, however, perform sig-
nificantly better on the symbolic regression problem. (Note the nar-
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Figure 8. CGA -vs- PGA2 on number match: Number of runs out of 100 that find
solutions with fitness 0.99 or higher.
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Figure 9. CGA -vs- PGA3 on number match: Fitness of best solution found averaged
over 100 runs and 95% confidence intervals.
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CGA vs PGA3: Number match
T
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Figure 10. CGA -vs- PGA3 on number match: Number of runs out of 100 that find
solutions with fitness 0.99 or higher.

rower y-axis range.) In particular, the PGAs with length 40 show a
marked improvement in the number of hits. PGA-255 with and without
non-coding regions is able to achieve a 100% hit rate in all but one
experiment (which reaches 98).

In both the number match and symbolic regression problems, PGA2
performs slightly better than PGA3. Non-coding regions appear to have
very little effect. Variable length individuals do give the PGA more
flexibility, but appears to add too much complexity to the search space.
Simply giving the PGA a fixed but reasonable amount of resource with
which to work seems to be the best, and relatively simple, solution. It is
important to note that, according the the calculations in section 4, com-
paring a CGA of length 40 with a PGA of length 255 still significantly
penalizes the PGA. Presumably, increasing the length, and thereby the
resolution, of the PGA would result in even better performance.

7. Conclusions

This paper introduces a GA with a new representation method which
we call the proportional GA. The PGA is a multi-character GA that
relies on the existence of genes rather than the order of genes to encode
information. The inspiration for the PGA comes from the biological
concept of gene expression: existing genes on a genome are expressed
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CGA vs PGA2: Symbolic regression
T T T

ko3 &

0.995 %: ]

Best fitness
o
©
©
T
1

0.985 - 1

098 Il Il Il Il Il Il Il
CGA PGA-40 PGA-255 PGA-40-nc PGA-255-nc PGA-var PGA-var-nc

Figure 11. CGA -vs- PGA2 on symbolic regression: Fitness of best solution found
averaged over 100 runs and 95% confidence intervals.

CGA vs PGA2: Symbolic regression
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Figure 12. CGA -vs- PGA2 on symbolic regression: Number of runs out of 100 that
find solutions with fitness 0.99 or higher.
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Figure 13. CGA -vs- PGA3 on symbolic regression: Fitness of best solution found
averaged over 100 runs and 95% confidence intervals.
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Figure 14. CGA -vs- PGA3 on symbolic regression: Number of runs out of 100 that
find solutions with fitness 0.99 or higher.
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when they produce protein products; the combination of expressed
protein products interact to produce life. Similarly, existing charac-
ters on a PGA individual are expressed and interact with the other
expressed characters from that individual to produce a candidate so-
lution. Information is represented in terms of the proportions rather
than the ordering of the characters on an individual. Statistically, a
fairly matched CGA and PGA should have, on average, equal proba-
bilities of finding a solution. Experimentally, the PGA appears to be
able to generate comparable behavior even with lowered resolution of
expression.

In section 6 we give a list of questions on which the work here is
focused. We now discuss our conclusions with respect to those ques-
tions.

1. How does a PGA compare to a traditional CGA? Can a PGA
perform at least as well as a CGA?

Our initial studies indicate that the PGA can perform as well or
better than a CGA. The determining factor for PGA performance
appears to be its resolution. Given a reasonable resolution, our PGA
performances were comparable or better than the CGA. “Reason-
able”, in this case, can still be significantly less that CGA resolution
(in our experiments, five times less).

The PGA appears to be particularly well suited for resource al-
location problems. A PGA that has enough resolution to encode
the target values will almost always find an optimal solution. A
PGA that does not have enough resolution, finds the best possible
solution for its given resolution. Given the opportunity, a PGA will
adjust the length of its evolved individuals to more closely match
the required resolution of a solution. The similarities between the
PGA problem representation and the resource allocation problem
itself is thought to be a reason for the excellent PGA performance.

On the number match and symbolic regression problems, where the
target values do not sum to 1.0, the PGA performs comparably or
better than the CGA if it is given enough resolution. The ability to
vary individual length is less useful in these problems, presumably
due to the more complex mapping between genotype and pheno-
type. Higher resolution appears to be the best method for improving
PGA performance. Interestingly, while CGA performance is similar
for both problems, the PGA performs significantly better on the
symbolic regression problem. The explanation for this different is
unclear at this point, but we note that both the resource allocation
and symbolic regression problems encode values that are dependent
on each other.
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2. Does a PGA use non-coding regions as a means of “fine-tuning”
the values it encodes?

The impact of non-coding regions is unclear in these experiments.
In general, the addition of non-coding regions did not produce any
noticeable difference in PGA behavior. The only instance in which
non-coding regions improved performance significantly is in the re-
source allocation problem when a PGA length that does not match
perfectly to form the target resolutions. In that instance, the PGA
appears to use non-coding regions as “padding” to achieve better
target values.

3. Can a PGA regulate the length of its individuals to minimize com-
putational effort while maximizing performance?

Given the opportunity, a PGA will attempt to evolve the length of
its individuals to accommodate the required resolutions. Parsimony
pressure can be used to minimize length with, apparently, very little
impact on fitness. The PGA successfully uses variable lengths to
solve the resource allocation problem. With the other problems,
however, variable length appears to be less useful than simply
providing sufficient resolution. As compared with insufficient reso-
lution, however, variable length PGAs achieve significantly better
fitness values. Overall, the addition of variable length individuals
appears to be more beneficial than the addition of non-coding
regions.

4. Does a PGA encourage the formation of building blocks?

The PGA forms building blocks by distributing copies of each
character across an entire individual. In a sense, any segment of
an individual is a “building block” representing a coarser version
of the solution represented by the entire individual. As a result,
the solution represented by a single individual is extremely robust
in response to changes in the length as well as to crossover. Close
examination of individual genomes finds many repeated regions.
The PGA does not form building blocks that consist of tightly
linked regions of the same character.

Our preliminary studies on the PGA have yielded very promis-
ing results and we plan to continue development and analyses of the
PGA representation. Despite the lowered resolution of the PGA rep-
resentation, PGA performance appears to be competitive with CGA
performance and PGA runs appear to be taking advantage of the flex-
ibility provided by variable length individuals. Although well-suited to
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resource allocation problems, the PGA representation can be modified
to work successfully on other types of problems.
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