COT 5405 Exam #2

October 30, 2003

Name : _________________________
1) (15 pts) Dijkstra's Algorithm

Given below is the weighted adjacency matrix of an undirected graph G. Find the shortest path in G from vertex A to vertex E using Dijkstra's algorithm. Please fill in the table below the adjacency matrix while tracing the algorithm and circle the final shortest distance.

	
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J

	A
	0
	2.1
	(
	(
	(
	(
	(
	(
	(
	2.0

	B
	2.1
	0
	3.1
	6.9
	(
	12.0
	(
	7.8
	(
	0.5

	C
	(
	3.1
	0
	3.5
	(
	(
	(
	(
	(
	(

	D
	(
	6.9
	3.5
	0
	8.0
	7.3
	(
	4.9
	(
	7.1

	E
	(
	(
	(
	8.0
	0
	1.5
	(
	(
	(
	(

	F
	(
	12.0
	(
	7.3
	1.5
	0
	4.8
	7.5
	(
	11.4

	G
	(
	(
	(
	(
	(
	4.8
	0
	2.9
	(
	(

	H
	(
	7.8
	(
	4.9
	(
	7.5
	2.9
	0
	1.6
	5.5

	I
	(
	(
	(
	(
	(
	(
	(
	1.6
	0
	1.8

	J
	2.0
	0.5
	(
	7.1
	(
	11.4
	(
	5.5
	1.8
	0


	Vertex to Add
	B
	C
	D
	E
	F
	G
	H
	I
	J

	A
	2.1
	(
	(
	(
	(
	(
	(
	(
	2.0

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	


2) (15 pts) Numbers of Ways to Make Change

Find the number of ways of making change for 18 cents when the valid denominations of coins are 1 cent, 3 cents, 7 cents, and 11 cents. Use the chart below to compute your answer. You must use the dynamic programming algorithm shown in class to get credit for this question.

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	3
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	7
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	11
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	


3) (25 pts) Randomized Binary Search

Random Robert has decided that the ordinary binary search on a sorted array is too orderly for him. Instead, Robert has created an adaptation of the binary search algorithm that will allow him to use random numbers. Here is Robert's algorithm:

Binary Search (Array A, value v)  

1. set low = 0

2. set high = SIZE-1, where SIZE is the length of the array A.

3. set checkindex to a random integer in between low and high, inclusive

4. while low is less than or equal to high do the following steps:


a. See if A[checkindex] equals v. If so, return found.


    else if A[checkindex] > v, set high = checkindex-1


    else if A[checkindex] < v, set low = checkindex+1 

            b. Set checkindex to a random integer in between the newly adjusted values of


    low and high.

5. Return not found.

Determine the average-case running time of Robert's algorithm. Please include all the necessary mathematical analysis.

4) (15 pts) Matrix Multiplication

Let M be a nxn matrix where each entry is considered mod p, for some prime p. (Thus all entries in M or M raised to an arbitrary power are in betweem 0 and p-1 inclusive.) Consider the problem of calculating Mk. The straightfoward algorithm would involve rewriting the product as follows:

Mk = (...((MxM)xM)...xM)

where you perform k-1 multiplications between two nxn matrices. 

Note: Since each matrix entry and computation is always in between 0 and p-1, you may assume that additions, subtractions and multiplications between a pair of integers mod p occur in constant time and that each entry contains a constant number of bits.

a) (5 pts) Using the standard method for multiplying matrices, (NOT STRASSEN'S) what would be the running time of this algorithm in terms of n and k? Justify your answer.

b) (10 pts) How can this algorithm be improved to yield a better asymptotic running time? Clearly outline your new algorithm in English. (For the purposes of this question, the fastest way asymptotically to multiply two matrices is to use Strassen's algorithm.) What would the new running time be in terms of n and k? Justify your answer.

5) (30 pts) Subset Sum

a) (15 pts) Consider the following modified version of the subset sum problem: Given a set S of n positive integers and a positive integer k, the target, determine whether or not some subset of values in S adds up to k. Create a dynamic programming algorithm to solve this problem that runs in O(nk) time, assuming that all additions, comparisons and array lookups take constant time. Show the execution of your algorithm on the input S = {1, 3, 5, 11} and k=15. (Some partial credit will be given for other algorithms if you can not come up with a DP algorithm. Full credit will only be given if you can execute your algorithm using O(n) space.)

b) (15 pts) Adapt the first algorithm so that if it is determined that a subset of elements in S add up to k, the elements of S that form a subset can be determined efficiently. Show the execution of your algorithm on the input S = {1, 3, 5, 11} and k=15. (Note: if multiple subsets add up to k, your algorithm can simply determine any one of them.)

Clearly label any work on this page that you would like graded.

