Introduction to Algorithms

COT 5405

Exam #1

February 3, 2004

Name : _______________________

1) In the game of craps, a player rolls two fair six-sided dice. If the sum of the dice on the first roll is a point (4, 5, 6, 8, 9, 10), then the player will roll the dice again until they either get their point (whatever they rolled the first time), or 7. If you get your point first, you win. If you get a 7 first, you lose. (So for example, a winning sequence of throws for a game could be 6, 3, 9, 12, 11, 11, 10, 6 and a losing sequence of throws for a game could be 4, 11, 3, 2, 8, 9, 8, 7.)

Consider a generalized version of this game where you roll two n-sided dice labelled 1, 2, 3, ..., n, where a point is the set of valid rolls except n+1. If you get a point on your first roll, you continue rolling until you get either your point or a sum of n+1 on the dice. Assume that you roll a point k, with k < n+1 on the first roll. Please answer both of the following questions in terms of n and k.

(10 pts) a) What is the expected number of rolls you will have AFTER rolling the point k?

(20 pts) b) What is the probability you will win given that you have rolled the point k?

2) You are playing a different version of the price is right. In this version, you make repeated guesses at the price of an object until you get the price exactly, at which point you win. However, you are only allowed to make only one guess at the price of an item that is above the actual retail price. If you make two such guesses you automatically lose. You are guaranteed that the price of the item is a positive integer ranging from 1 to n. You goal is to guess the correct price of the item in question in as few guesses as possible. Here are two competing algorithms for guessing strategies:

Algorithm #1) Make the first guess 1 dollar, and double every guess thereafter until you make a guess that is too high. (If the price is a perfect power of two, you would guess it correctly without this occurring.) Assume that 2k was too low but that 2k+1 was too high for some positive integer k. From that point on, you must guess 2k + 1, 2k + 2, ... dollar by dollar until you hit the correct price. Any other strategy from this point on may fail.

Algorithm #2) Make the first guess m, the next guess 2m, adding m to each guess until you guess too high. (If the price is a perfect multiple of m, you would guess it correctly without this occurring.) Assume that km was too low, but that (k+1)m was too high for some positive integer k. From that point on, you must guess km+1, km+2, ..., dollar by dollar until you hit the correct price.

(5 pts) a) What is the worst case performance of algorithm #1 in number of guesses made before guessing the correct price, in terms of n? To simplify your answer, assume that n is perfect power of 2.

(5 pts) b)What is the worst case performance of algorithm #2 in number of guess made before guessing the correct price, in terms of n and k? To simplify your answer, assume that n is a multiple of k.

(5 pts) c) Let k=nm for some real number m such that 0 < m < 1. Let t(n) be the function for the total number of guesses we make in Algorithm #2 until we guess the correct number. In terms of n and m, what is the number of guesses necessary to get the correct price? Please answer this in the form ((f(n)), where f(n) is some function as opposed to giving an exact answer.

(5 pts) d) What should the value of m be in the part c to optimize Algorithm #2. Why?

(20 pts) e) For the value of m you chose in part d, imagine that the value of n was such that nm was an integer and that n was a multiple of nm as well. Assuming that each price from 1 to n was equally likely for the object, what is the expected number of guesses the algorithm makes to determine the correct price of the item? (Please give an exact answer here.)

3) The subset sum problem is as follows: Given a set of n integers (in an array A), and a target value k, determine whether or not there exists a subset of the integers that adds up to exactly k. Here is a recursive solution to that problem:

SUBSET_SUM(Array A, Integer k, Integer current_index)

1. If k is 0, return true.

2. If the current_index is greater than the length of A, return false.

3. Return SUBSET_SUM(A, k-A[current_index], current_index+1) OR

 SUBSET_SUM(A, k, current_index+1)

This algorithm works because you try out two cases:

1) The element stored in the current index is in the subset that adds to k.

2) The element stored in the current index is not in the subset that adds to k.

If the first is the case, then you want to find some subset that adds up to the given target k minus the current element, from the remaining elements not used yet.

If the second is the case, you then want to find a subset that adds up to the given target k from the remaining elements not used.

Here is a short example. In trying to find a subset of the the set {3, 5, 6, 2} that adds up to 7, we will try to find a subset of {5, 6, 2} that adds up to 4 (if we take 3), and we will try to find a subset of {5, 6, 2} that adds up to 7 (if we don't take 3). We solve both of these cases recursively.

Finally, if either of these cases returns true, the algorithm returns true, otherwise it returns false.

(5 pts) a) Let T(n) a function that denotes the running time of the algorithm above in terms of the input array size n. Assume that statements 1 and 2 are implemented very poorly and take exactly n "units" of time, write down a recurrence relation satisfied by T(n). (Don't not use any order notation in this recurrence.)

(25 pts) b) Assuming that T(1) = 1, obtain a closed form solution for T(n).

Scratch Page: If you would like any work on this page graded, please label it clearly.

