COT 5405 Programming Assigment #1

Assigned: 2/17/04, Tuesday

Due: 2/24/04, Tuesday (by 11:59pm) to khurram@cs.ucf.edu

Matrix Exponentiation

Markov Chains are an application of matrices that require exponentiation of a particular type of matrix to reasonably high powers. You will write two functions to exponentiate a matrix here are the prototypes for both:

double** expIter(double **mat, int size, int exp);

double** expDC(double **mat, int size, int exp);

Each of these functions will calculate the matrix mat which has dimensions sizexsize to the power exp and return that answer. The first will do so iteratively and the second using the divide and conquer method shown in class.

I will provide several test matrices for you to use. Each matrix (and the exponents to raise it to) will be stored in separate files. Here is the file format I will use:

The first line will contain two integers, n followed by m. n is the length and width of the matrix to be exponentiated and m is the number of different exponents to use for exponentiating the matrix in that file.

On the second line will be m positive integers all separated by spaces. These integers will be the exponents to raise the matrix to.

On the following n lines there will be n doubles each. The jth entry on the ith row of these sets of rows will be the entry in row i column j of the matrix.

For each exponent, separately run both of the given functions and time them. Note that a running time of 0 is impossible. If you get this, think of a way to measure the run time more accurately. Try to gauge whether or not your experimental data corresponds with the theory we showed in class. Do your analysis in terms of the value of the exponent. If you'd like to improve your analysis, include the effect of the size of the matrix on the run times. You may create matrices on your own to test your program with.

You should email to the TA your code as well as a Word document with your run-time analysis. This should include your experimental run times for all the test cases I post as well as any that you tried yourself. Along with that, try to determine whether or not your experimental data supports the theory. Please justify your answer. If necessary, it's okay if a case or two doesn't finish for the slow algorithm, just note how long you ran them before you gave up. Of course, it's always better if you can wait till the algorithm does finish.

