COT 4210 Program #2: Polynomial Time Reduction from 3-SAT to Vertex Cover
The Problem

In class we covered the proof reducing 3-SAT to Vertex Cover in polynomial time. For this program, you will convert this algorithm into either a C or Java program.

You will read input of several instances of 3-SAT from the file “3sat.txt” and output the corresponding instances of Vertex Cover to a file called “vc.txt”. Your program will convert 3-SAT instances into a VERTEX COVER instances such that the former is in 3-SAT iff the latter is in VERTEX COVER. Make sure to hard-code the file names so your program can be immediately run without any user input. Make sure you match the sample shown below. Here are the input and output file formats:

Input File Format (3sat.txt)

The first line contains a single positive integer, n, representing the number of input instances of 3-SAT. The cases each follow.

The first line of each case contains two positive integers, c and vars, separated by a space. c is the number of clauses in the 3-SAT expression and vars is the number of variables in the 3-SAT expression. The next c lines of the file will contain one clause of the 3-SAT expression each. Each line of these subsequent lines contains three integers separated by spaces. All integers will be either in between 1 and vars, inclusive or -vars and -1, inclusive. In particular, a positive integer k stands for the variable xk, while the negative integer -k stands for the negation of the variable xk. As an example, the clause:

(x1 (~x2 (x3) ((~x1 (x2 (x3) ((~x1 (~x2 (~x3) ((~x1 (~x2 (x3)

would be stored in a file as follows:

4 3

1 -2 3

-1 2 3

-1 -2 -3

-1 -2 3

Output file format (vc.txt)

The first line of the output file will contain a single positive integer, n, the number of output graphs stored in the file.

The first line of each output case will contain two positive integers, v and k, where v is the number of vertices in the output graph and k is the integer for the desired vertex cover.

The following v lines will contain v integers (0 or 1), representing the adjacency matrix of the output graph. In particular, a 0 on row i and column j represents that there is no edge between vertices i and j. A 1 in the same slot represents that an edge does exists between those two vertices.
In order to produce the “correct” output (for grading purposes), you must number your vertices from 0 to 3c + 2vars – 1. Furthermore, the vertices must be labeled as follows:

The vertices for the three variables in clause i (where i starts at 0) are 3i, 3i+1 and 3i+2. (These are the variables in the triangles.)

The vertices for the “horizontal bars” representing each individual variable and its negation should start being numbered at 3c and end at 3c + 2vars – 1. In particular, variable i (where i starts at 1) should have number 3c + 2(i – 1) and the negation of variable i should have the number 3c + 2i – 1.

Given that you follow these numbering conventions, there should be a unique correct answer for each output graph and value of k.
Sample Input
2
4 3

1 -2 3

-1 2 3

-1 -2 -3

-1 -2 3

2 2

1 1 2

-2 -2 -1

Sample Output

2
18 11

0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0

0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
10 6

0 1 1 0 0 0 1 0 0 0

1 0 1 0 0 0 1 0 0 0

1 1 0 0 0 0 0 0 1 0

0 0 0 0 1 1 0 0 0 1

0 0 0 1 0 1 0 0 0 1

0 0 0 1 1 0 0 1 0 0

1 1 0 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0

0 0 1 0 0 0 0 0 0 1

0 0 0 1 1 0 0 0 1 0
Implementation Restrictions
1) Write your program in either C or Java.

2) Write your program from scratch. In particular, do NOT use any of the posted code from the course website.
3) Submit your .c or .java file via WebCourses.
