

Fall 2024 COT 4210 Exam #4
November 21, 2024
Sheet 1: Class P

Last Name: _____ , **First Name:** _____

1) (15 pts) Prove that the language, L, below, belongs to the class P. (Note: You may assume that the grader fully understands what a depth first search or breadth first search does, but you must state its run time properly.)

$L = \{ \langle G \rangle \mid G \text{ is an undirected, unweighted graph, which, with the addition of one edge, can be connected.} \}$

2) (10 pts) Prove that the language, L, below, belongs to the class P.

$L = \{ \langle S \rangle \mid S \text{ is a list where no two integers in the list are the same.} \}$

Fall 2024 COT 4210 Exam #4

November 21, 2024

Sheet 2: Class NP

Last Name: _____, **First Name:** _____

3) (15 pts) Let $\text{BIGDIVISOR} = \{ (n, k) \mid n \text{ has at least one proper divisor greater than } k. \}$.

(a) Prove that BIGDIVISOR is in NP.

(b) Explain why regular trial division (dividing n by each integer in between $k+1$ and $n-1$, inclusive), doesn't prove that BIGDIVISOR is in P.

4) (20 pts) For this question, write a verifier for 3-SAT. The verifier will take in an integer array, phi, (several arrays of size 3), where each array represents a clause as well as a String, s, representing the truth setting of each variable to verify. Let the variables be x_1, x_2, \dots, x_k . A positive integer i represents the variable x_i and the negative integer $-i$ represents the variable \bar{x}_i . Thus, the clause $(x_2 \vee \bar{x}_5 \vee \bar{x}_6)$ would be represented by the array [2, -5, -6]. The string s will store the truth setting of each variable to verify. If the character at index i is 'T', then variable x_{i+1} is set to true and if the character at index i is 'F', then the variable x_{i+1} is set to false. Your method should return true if the truth setting in s satisfies the boolean formula represented in the 2D array phi, and false otherwise. (Note: n and k are NOT valid variable names inside of the code unless you define them...) You may assume the input is well-formed; that every variable described in phi is represented in s. (So, you don't need to worry about array out of bounds errors if you write your code in a logically correct manner.)

```
import java.util.*;  
  
public class e4q4 {  
  
    public static boolean verify(int[][][] phi, String s) {  
  
    }  
}
```

Fall 2024 COT 4210 Exam #4
November 21, 2024
Sheet 3: Class NP-Complete

Last Name: _____ , **First Name:** _____

5) (15 pts) In homework 6, we dealt with the problem 4-SAT, but never proved that it's NP-Complete. Prove that 4-SAT is NP-Complete. Do all parts of the proof.

6) (20 pts) A cut in a graph is the partition of a graph's vertices into two disjoint sets, S and T . The weight of a cut is defined as the sum of edge weights of the edges with one endpoint in S and the other endpoint in T . For the purposes of this problem, the graph is undirected. Let $\text{MAX-CUT} = \{ \langle G, k \rangle \mid G \text{ has a cut of weight } k \text{ or more} \}$. It can be proven that this problem is NP-Complete, thus for this problem, assume that it's known that this language is an NP-Complete language.

Consider a language called **MIN-GROUP-PENALTY** where the input is a set of n people who are to be placed on two disjoint teams at a cost of k or less. For each pair of distinct people, a and b , the cost of putting those two people on the same group is $\text{cost}(a, b)$. (Note that $\text{cost}(a, b) = \text{cost}(b, a)$. The theory here is that maybe a and b don't like each other, so we'll have issues if we place them on the same team and this is encapsulated in the cost function.) We can specify the language as follows:

MIN-GROUP-PENALTY = $\{ \langle C, k \rangle \mid C \text{ stores the cost matrix for all pairs of people where there exists a way to place all people onto two disjoint teams at a total cost of } k \text{ or less.} \}$

- (a) Prove that **MIN-GROUP-PENALTY** is in NP.
- (b) Via reduction from **MAX-CUT**, prove that **MIN-GROUP-PENALTY** is NP-Complete.

7) (5 pts) In what city is the Indianapolis Motor Speedway? _____