

Fall 2024 COT 4210 Exam #2
October 1, 2024
Sheet 1: Context Free Grammars

Last Name: _____, **First Name:** _____

1) (10 pts) Design a CFG over the alphabet {a, b, c} for the following language:

$L = \{ a^n b^x c^y a^n \mid n \geq 0, x \geq 0, y \geq 0 \}$. Please make your start symbol S.

2) (25 pts) Convert the grammar shown below to Chomsky Normal Form. S is the start symbol, the alphabet is {a, b} and $V = \{S, A, B, C\}$

$S \rightarrow ABC$
 $A \rightarrow ABBA \mid aB$
 $B \rightarrow BB \mid ab \mid \epsilon$
 $C \rightarrow B \mid b$

Clearly label your answer after each of the following stages: (1) new start variable, (2) Removing ϵ rules, (3) Remove unit rules, (4) Add additional variables and rules so no right hand side has more than 2 variables.

Fall 2024 COT 4210 Exam #2
October 1, 2024
Sheet 2: Push Down Automatas

Last Name: _____ , **First Name:** _____

3) (15 pts) Design a PDA over the alphabet {a, b, c} which accepts the following language:

$L = \{ a^x b^y c^z \mid x = y + z, x > 0, y \geq 0, z \geq 0, y + z > 0 \}$. Give the FULL formal definition of the PDA. Namely, explicitly list out Q , Σ , Γ , δ , q_0 and F .

4) (15 pts) Convert the CFG shown below with start symbol S, alphabet {a, b}, $V = \{\}$ to an equivalent PDA using the algorithm shown in class. Just draw the corresponding PDA and no need to label any states except for q_{start} (start state), q_{loop} and q_{accept} (only accept state). When labeling your transition arrows, please use the format $x, y \rightarrow z$, where x is what is read in, y is what is popped from the stack and z is what is pushed onto the stack.

$S \rightarrow a \mid SAB$

$A \rightarrow b \mid BB$

$B \rightarrow a \mid \epsilon$

Fall 2024 COT 4210 Exam #2

October 1, 2024

Sheet 3: Pumping Lemma for Context Free Languages

Last Name: _____ , **First Name:** _____

5) (15 pts) Use the Pumping Lemma for Context Free Languages to prove that the following language over the alphabet $\{0\}$ is not context free:

$$L = \{0^{n^2} \mid n \geq 0\}$$

6) (15 pts) Use the Pumping Lemma for Context Free Languages to prove that the following language over the alphabet $\{0, 1\}$ is not context free:

$$L = \{0^{4n}1^{2n}0^n | n \geq 0\}$$

7) (5 pts) In what city is the world famous San Diego Zoo? _____