

Fall 2024 COT 4210 Exam #1
September 10, 2024
Sheet 1

Last Name: _____, **First Name:** _____

1) (10 pts) Design a DFA that accepts the following language over the alphabet, $\Sigma = \{0\}$:

$L = \{ w \mid w \text{ is an even length palindrome of 4 or more symbols} \}$. Please draw your DFA in full detail, clearly specifying all 5 parts of the 5-tuple that define a DFA.

2) (10 pts) Below is a formal definition of a DFA. Please draw the corresponding DFA diagram accurately and completely.

$$Q = \{ a, b, c, d, e \}$$

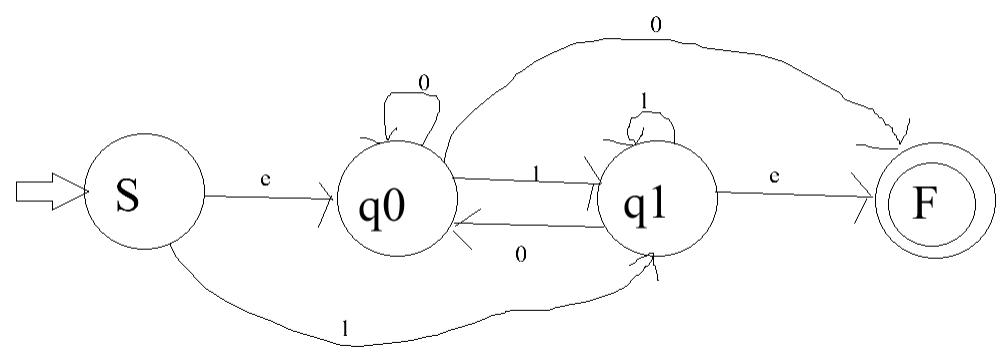
$$\Sigma = \{ \$, ! \}$$

$$q_0 = c$$

$$F = \{ b, e \}$$

Delta =

	\$!
a	b	e
b	a	b
c	c	a
d	c	e
e	d	c


Fall 2024 COT 4210 Exam #1
September 10, 2024
Sheet 2

Last Name: _____, **First Name:** _____

3) (10 pts) Design a regular expression for a language of strings over the alphabet $\Sigma = \{0, 1\}$, that has at most 3 occurrences of the symbol 1. Put a box clearly around your answer.

4) (20 pts) Consider the process of converting a DFA to a regular expression that expresses the same language. The initial DFA has states q_0 , q_1 and q_2 . In the beginning of the process states S and F are added, with an epsilon transition from S to the start state of the DFA, q_0 , and epsilon transitions from the accept state(s) to F . Finally, F is denoted as the only accept state. After ripping out q_2 , the 4 state GNFA looks like what is shown on the next page.

Complete the process of determining the equivalent regular expression **by first ripping out q_0 , followed by ripping out q_1 .** (Note: credit will be taken off for ripping the states in the opposite order, so please follow these directions. Also, when you rip q_0 , there will be four transitions that need to be computed: $S \rightarrow F$, $S \rightarrow q_1$, $q_1 \rightarrow q_1$ and $q_1 \rightarrow F$.) Draw your 3 state GNFA and write down the corresponding regular expression from $S \rightarrow F$ after ripping out q_1 . Put a box around this regular expression (the final answer). **(Note: e in the drawing means epsilon, ϵ .)**

Fall 2024 COT 4210 Exam #1
September 10, 2024
Sheet 3

Last Name: _____, **First Name:** _____

5) (15 pts) Let A and B BOTH be regular languages over the alphabet $\Sigma = \{0, 1\}$. Prove, via construction, that $A - B$ is also a regular language. Be as precise as possible in your description of the general construction. A concrete example is not necessary for full credit. (But if your description is vague an example may help clarify your description of the general case.)

6) (15 pts) Let $L = \{0^x 1^y 0^{x+y} \mid x, y > 0\}$, be a language defined over the alphabet $\Sigma = \{0, 1\}$. Prove, via the pumping lemma that L is not a regular language.

Fall 2024 COT 4210 Exam #1
September 10, 2024
Sheet 4

Last Name: _____, **First Name:** _____

7) (15 pts) The DFA below with states $Q = \{a, b, c, d, e\}$ over the alphabet $\Sigma = \{0, 1\}$ is defined below formally. Fill out the table below the formal description when running the DFA minimization algorithm on the DFA. Feel free to draw the DFA in the available space.

$F = \{a, e\}$, $q_0 = a$.

Delta =

	0	1
a	a	d
b	d	c
c	d	b
d	b	e
e	a	d

Drawing

State 1	State 2	Action Taken
a	e	
b	c	
b	d	
c	d	

Draw the final minimized DFA, putting the letters together for each merged state. For example, if a and b were to be merged, then make the resulting state ab.

8) (5 pts) What kind of sweet treat does The Donut Patch serve? **Donuts**