COT 4210 Homework #1

Assigned: 1/10/05 (Monday)

Due: 1/31/05 (Monday)

Text: Sipser

Exercises from the text

1.1, 1.2, 1.3, 1.4a,b,f,i,k,l, 1.5c,e, 1.6a, 1.8a, 1.9, 1.10, 1.12b, 1.14b, 1.16b, 1.17b,c, 1.18,

Problems from the text

1.24, 1.37, 1.41

COT 4210 Homework #2

Assigned: 2/2/05 (Wednesday)

Due: 2/11/05 (Friday)

Exercises from the text

Problems from the text
2.1c, 2.1d, 2.4f, 2.5f, 2.14

2.15, 2.18b
COT 4210 Homework #3

Assigned: 2/23/05 (Wednesday)

Due: 3/4/05 (Friday)

Exercises from the text

3.1b, 3.1d, 3.2d, 3.6

Problems from the text

3.9a, 3.12, 3.13, 3.15b, 3.19

Problem (Required for homework): Fully describe a Turing Machine that accepts the language L = {w | w does NOT have the same number of 0s and 1s} over the alphabet {0, 1}. If possible, try your machine out on a simulator online. (I tried to find one I liked but couldn't after searching for an hour. The first one I found was decent, but didn't allow for a reject state and a separate accept state as I had hoped. Maybe it did and I never figured it out. Needless to say, it wasn't intuitive...)

Extra Credit: Write your own TM simulator. Your simulator should read in the description of a TM from a file (prompt the user for the input file name), and then as the user for an input string. Then your program should output whether that string gets accepted or rejected by the machine. (If neither occurs, your program does not need to detect the loop!!!) With your submission, include details of how to create an input file. Make sure you accommodate for both an accept and reject state, as well as how the book describes moving off the leftmost tape square. I will accept this extra credit any time this semester before the last homework assignment is due. If you wish, you can write the simulator to be a GUI or an applet that visually shows each transition, but this is NOT necessary to get the extra credit.

COT 4210 Homework #4

Assigned: 3/7/05 (Monday)

Due: 3/30/05 (Wednesday)

Exercises from the text

4.1, 4.5

Problems from the text

4.11, 4.17

1) Let G be the grammar

S (aS | AB

A (bAa | a

B (bB | b

a) Trace the stack of the top-down depth-first parse of baab.

b) Give the tree built by the breadth-first bottom-up parse of baab.

c) Trace the stack of the bottom-up depth-first parse of baab.

2) Construct a grammar G' that contains no directly left recursive rules and is equivalent to

S (A | C

A (AaB | AaC | B | a

B (Bb | Cb

C (cC | c

3) Convert the Chomsky normal form grammar

S (AB | BC

A (AB | a

B (AA | CB | b

C (a | b

to Greibach normal form. Process the variables according to the order S, A, B, C.

4) Let M be the DFA with the following description:

Q = {q0, q1, q2, q3, q4, q5}

(= {a, b}

Start State = q0

F = {q0, q2, q4}

	(
	a
	b

	q0
	q1
	q3

	q1
	q2
	q3

	q2
	q5
	q2

	q3
	q4
	q1

	q4
	q5
	q4

	q5
	q5
	q5

a) Trace the actions of the algorithm shown in class to determine the equivalent states of M. Give the values of D[i,j] and S[i,j] computed by the algorithm.

b) Give the equivalence classes of states.

c) Give the state diagram of the minimal state DFA that accepts L(M).

Program for homework: Write a function (in C) that takes in two positive integers: a numerator and a denominator and outputs an integer, namely the natural number that corresponds to that positive fraction according to the following ordering:

	n
	fraction

	1
	1/1

	2
	1/2

	3
	2/1

	4
	1/3

	5
	2/2

	6
	3/1

	7
	1/4

	8
	2/3

	9
	3/2

	10
	4/1

	11
	1/5

	etc.
	...

Write a main function that allows the user to repeatedly enter in a numerator and denominator and outputs the corresponding natural number for that fraction.

COT 4210 Homework #5

Assigned: 4/13/05 (Wednesday)

Due: 4/22/05 (Friday)

1) Define the language 4-SAT = { (| (is a boolean formula in conjuntive normal form with four variables in each clause } Prove that 4-SAT is NP-Complete by reducing it to 3-SAT. Explain why the idea used in this reduction can NOT work for reducing 3-SAT to 2-SAT, where 2-SAT is defined in a similar manner.

2) Write a function in either C or Java that converts a 3-SAT instance into a SUBSET-SUM instance such that the former is in 3-SAT iff the latter is in SUBSET-SUM. Your function should take as input the name of a file that contains a description of a 3-SAT instance. Your program should write to a designated output file the corresponding SUBSET-SUM instance. Here are the file formats for both problems:

3-SAT file format

The first line contains two positive integers, n and v, separated by a space. n is the number of clauses in the 3-SAT expression and v is the number of variables in the 3-SAT expression. The next n lines of the file will contain one clause of the 3-SAT expression each. Each line of these subsequent lines contains three integers separated by spaces. All integers will be either in between 1 and v, inclusive or -v and -1, inclusive. In particular, a positive integer k stands for the variable xk, while the negative integer -k stands for the negation of the variable xk. As an example, the clause:

(x1 (~x2 (x3) ((~x1 (x2 (x3) ((~x1 (~x2 (~x3) ((~x1 (~x2 (x3)

would be stored in a file as follows:

4 3

1 -2 3

-1 2 3

-1 -2 -3

-1 -2 3

SUBSET-SUM file format

The first line contains two integers, n and t, where n is the number of integers in the subset and t is the target. The next line contains n integers that comprise the set, separated by spaces.

Here is a sample file, that corresponds to the 3-SAT file example above:

14 5631

4160 4117 1040 1093 337 260 64 64 16 16 4 4 1 1

Note: Use the construction at the end of section 7.5, except determine the values of the numbers in base 4 instead of base 10.

