

COT 4210 Homework #2: Regular Expressions and Pumping Lemma
Due Date: Tuesday September 14, 2010 (in class)

1) Give a regular expression generating the following languages:

$L_1 = \{w \mid w \text{ begins with a 1 and ends with a 0.}\}$
 $L_2 = \{w \mid w \text{ contains the substring 0101}\}$
 $L_3 = \{w \mid \text{the length of } w \text{ does not exceed 5}\}$
 $L_4 = \{w \mid \text{every odd position of } w \text{ is a 1}\}$
 $L_5 = \{w \mid w \text{ contains an odd number of 1s, or exactly 2 0s.}\}$

2) Use the procedure shown in class and shown in the textbook to convert the following regular expressions to NFAs:

a. $(0 \cup 1)^*000(0 \cup 1)^*$
 b. $((00)^*(11)) \cup 01)^*$

3) Use the algorithm described in class to convert a DFA to a regular expression on the two following DFAs described below:

DFA D_1 : $Q = \{1, 2\}$, $\Sigma = \{a, b\}$, $F = \{2\}$, 1 is the start state, and δ is described as follows:

Q	Σ	Q
1	a	1
1	b	2
2	a	2
2	b	1

DFA D_2 : $Q = \{1, 2, 3\}$, $\Sigma = \{a, b\}$, $F = \{1, 3\}$, 1 is the start state, and δ is described as follows:

Q	Σ	Q
1	a	2
1	b	2
2	a	2
2	b	3
3	a	1
3	b	2

4) Prove that the following languages are not regular via the Pumping Lemma:

$$L_1: \{0^n 1^n 2^n \mid n \geq 0\}$$

$$L_2: \{ww \mid w \in \Sigma^*\}$$

$$L_3: \{a^{2^n} \mid n \geq 0\}$$

5) Determine, with proof, whether or not the following languages are regular:

$L_1: \{w \mid \text{contains the same number of occurrences of 01 as 10}\}$

$L_2: \{w \mid \text{contains the same number of occurrences of 00 as 11}\}$

6) Determine a DFA with the minimum number of states that is equivalent to the DFA described below:

DFA D: $Q = \{0, 1, 2, 3, 4, 5, 6\}$, $\Sigma = \{a, b\}$, $F = \{1, 3, 5, 6\}$, 0 is the start state, and δ is described as follows:

Q	Σ	Q
0	a	1
0	b	3
1	a	2
1	b	4
2	a	5
2	b	5
3	a	4
3	b	2
4	a	5
4	b	5
5	a	6
5	b	5
6	a	6
6	b	6

Please use the algorithm shown in class.