COT 3100 Recitation: Sum, Matrix, Recurrence Relation Practice

Warm-Up Problems

- 1) The 36 distinct integers from -15 to 20, inclusive fill a 6 x 6 grid such that each row and column sum to the same value. What is this row/column sum?
- 2) What integer less than 100 has the most number of divisors? If there is a tie, which is the smallest such number?
- 3) The r and s be the roots of the quadratic equation $x^2 + 3x 6 = 0$. What is the quadratic equation with leading coefficient 1 that has roots $\frac{r}{s}$ and $\frac{s}{r}$?
- 4) Both Seema and Madison choose a positive integer at random, such that the probability they choose the integer k is 2^{-k}. What is the probability that Seema's number is smaller than Madison's?
- 5) Let S be the set of all positive integer divisors of 10⁵. How many numbers are the product of two distinct elements of S?

Sum, Matrix, Recurrence Relation Problems

- 6) An arithmetic sequence a_1 , a_2 , a_3 , ... is such that $a_{10} = 40$ and $a_{25} = 10$. Determine both a_1 and the sum of the first 50 terms of the sequence.
- 7) An infinite geometric sequence a_1 , a_2 , a_3 , ... has a sum of 10. If the odd indexed terms (a_1 , a_3 , etc.) have a sum of 7, what is the common ratio of the sequence? What is the first term of the sequence?
- 8) Determine the following infinite summation: $\sum_{i=1}^{\infty} (2i-1)(\frac{1}{2})^i$.
- 9) Determine the following matrix product, $\begin{bmatrix} 2^n & 1-2^n \\ 3 & 2^{n-1} \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix}$, in terms of n.
- 10) The Fibonacci numbers are defined as follows:

$$F_1 = 1$$
, $F_2 = 1$, for all $n > 2$, $F_n = F_{n-1} + F_{n-2}$.

For all k > 2, prove the following:

$$F_k^2 - F_{k-1}F_{k+1} = F_{k-2}F_k - F_{k-1}^2$$