COT 3100 Homework #10: Functions and Relations Due Date: Friday, April 18th, in recitation

1) Let A, B be sets with |B| = 5. If there are 2^{30} relations from A to B, what is |A|?

- 2) a) Give an example of a relation that is irreflexive and transitive, but not symmetric.
- b) Let R be a non-empty relation on a set A. Prove that if R satisfies any of the two following properties irreflexive, symmetric, transitive then it can not satisfy the third.

3) Let |A| = 12. Determine the number of binary relations on AxA that satisfy the following properties:

a) reflexiveb) neither reflexive nor irreflexivec) symmetricd) reflexive and symmetrice) irreflexive and anti-symmetric

4) With proof, determine if the following relations are equivalence relations, partial ordering relations, or neither.

- a) { (a, b) $| a \in Z^+, b \in Z^+, a > 2b \text{ or } b > 2a$ }
- b) { (a, b) | $a \in Z^+$, $b \in Z^+$, $a \equiv 0 \mod b$ or $b \equiv 0 \mod a$ }
- c) { (a, b) $| a \in Z^+$, $b \in Z^+$, and $\exists c \in Z^+$ such that b = ac }

5) Let g: A \rightarrow A be a bijection. For $n \ge 2$, define $g^n = g \circ g \circ ... \circ g$, where g is composed with itself n times. Prove that for $n \ge 1$, that $(g^n)^{-1} = (g^{-1})^n$, by using induction on n.

6) Prove that following function is a bijection from the open interval (0,5) to the positive real numbers:

$$f(x) = \frac{5 - x}{5x}$$

7) Determine the inverse of the function defined in question #6.

8) Let $f : A \to B$ and $g : B \to C$ denote two functions. Prove or disprove that if $g \circ f : A \to C$ is injective, then *f* is injective.

9) Let $f : A \to B$ and $g : B \to C$ denote two functions. Prove or disprove that if $g \circ f : A \to C$ is injective, then g is injective.