

COT 3100 Fall 2024 Homework #3
Please Consult WebCourses for the due date/time

1) (5 pts) State the quotient and remainder for the following division operations when dividing a by b:

- a) $a = 1234, b = 123$
- b) $a = 6898, b = 10000$
- c) $a = 374, b = 11$
- d) $a = 888, b = 37$
- e) $a = 2024, b = 32$

2) (4 pts) Use the cycle method to calculate the remainder (by hand) when dividing a by b for each of the following problems:

- a) $a = 3^{12767}, b = 7$
- b) $a = 17^{1000000}, b = 32$

3) (4 pts) Use the method of fast modular exponentiation (bottom up) to find the remainders when dividing a by b for each of the following problems:

- a) $a = 2^{45}, b = 23$
- b) $a = 3^{27}, b = 29$

4) (5 pts) Let a and b be integers such that $17 \mid (4a + 7b)$. Prove that $34 \mid (58a + 8b)$.

5) (5 pts) Determine, with proof, all ordered pairs of integers (x, y) which satisfy the equation

$$228x + 589y = 16657.$$

6) (15 pts)

(a) Find all integer solutions to the equation $193x + 85y = 1$.

(b) Find all integer solutions to the equation $193x + 85y = 8$.

(c) Find $85^{-1} \bmod 193$.

7) (4 pts) Let $a = 2^6 3^3 5^4 7^2$, $b = 2^3 3^7 5^1 11^6$, and $c = 2^7 3^5 5^{10} 11^5$. Determine, in prime factorized form, both $\gcd(a, b, c)$ and $\text{lcm}(a, b, c)$.

8) (3 pts) For the numbers a, b and c listed in problem 7, determine the number of divisors each of those numbers has.

9) (5 pts) Let $X = 1250!$ (1250 factorial). If we were to represent X in base 12, how many zeroes would that number end in?