COP 3530 Recitation #7 Problems (Note: Each group should do both problems!)

One problem that can be solved using recursion is determining a binomial coefficient. Mathematically, the definition is as follows:

C(n, 0) = C(n, n) = 1, for all non-negative integers n.

C(n, k) = C(n-1, k-1) + C(n-1, k), for all positive integers n and k where 0 < k < n.

Problem #1

Write a recursive function with the signature below to determine binomial coefficients. You may assume that your function will be called with valid n and k values.

//Precondition: n and k are non-negative with n (k.

public static int comborec(int n, int k);

Problem #2

Binomial coefficients can also be generated in "half" of a 2-D array such as is done with Pascal's triangle:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

etc.

The value of C(n,k) will be on row n, column k of this chart. (Can you verify why this is the case?) Note that we assume the chart starts in row 0 and column 0.

Write a function that uses dynamic programming to calculate binomial coefficients. The signature is given below. Once again, assume that your function will be called with valid n and k values.

//Precondition: n and k are non-negative with n (k.

public static int combodyn(int n, int k);

For Extra Credit

Implement both of the methods above, replacing each int with a BigInteger object. Compare running times of both methods for various values of n and k. Do the experimental run-times you get correspond to the theoretical analyses of each algorithm? (The dynamic programming should have a straightforward analysis. To analyze the recursion, simply note that each terminal function call returns 1, so that the number of function calls is proportional to the actual value the function returns, just like Fibonacci.)

