COP 3530 Recitation #2 Problems

Problem #1

You are to write code to simulate a 16-bit unsigned binary counter. You will store your counter in an integer array of size 16, where each bit is stored in an element of the array. Your goal will be to determine the amortized worst case average of advancing the counter n times. The key to your simulation will be a successor function. Here is the prototype for that function:

int successor(int[] counter);

This function will take in the array storing the binary counter value and increment the counter by one. Then it will return the number of bits flipped in the operation. For example, if we pass in 0000000000001000, then afterwards, the counter should be 0000000000001001 and the function should return 1. If we pass in 0000000000001111, then after the function is done the array should store 0000000000010000 and it should return 5, since 5 bits were flipped.

For your simulation, initialize your counter to all 0s. Then, increment your counter n times, for various values of n that you pick. (Make sure you pick n < 216.) For the different values of n that you pick, keep track of the total number of bits flipped and the average number of bits flipped per iteration (just divide the total by n). See if you notice any patterns for this last value for different values of n. See if you can determine some sort of upper bound for this value. We know that the worst case is that log2n bits get flipped, where n is the maximum value that can be represented by the counters, but what is the worst case amortized number of flips over a certain number of operations?

Problem #2

Write a function to calculate Fibonacci numbers in two ways:

1) Recursively

2) Iteratively

Use Java's BigInteger class so you can represent very large Fibonacci numbers.

Compare the running times of both methods in calculating Fn, the nth Fibonacci number for various values of n. Do these values match up with the theoretical values you'd expect? Why or why not?

