COP 3530 (Computer Science III)

Final Exam Spring 2006

Lecturer: Arup Guha

4/26/06

Name: ________________

1) (15 pts) The adjacency matrix below stores the capacities for a flow network. Answer the questions that follow the adjacency matrix. All vertices that are not connected by an edge are denoted by a 0.

	
	S
	A
	B
	C
	D
	E
	F
	T

	S
	0
	15
	5
	10
	0
	0
	0
	0

	A
	0
	0
	0
	0
	6
	10
	0
	0

	B
	0
	0
	0
	0
	0
	0
	9
	0

	C
	0
	0
	0
	0
	7
	0
	6
	0

	D
	0
	0
	0
	0
	0
	0
	0
	15

	E
	0
	0
	5
	0
	0
	0
	0
	4

	F
	0
	0
	0
	0
	0
	0
	0
	8

	T
	0
	0
	0
	0
	0
	0
	0
	0

a) What vertex is the source of this flow network? ____

b) What vertex is the sink of this flow network? ____

c) Calculate the value of the cut {S, A, B, C} and {D, E, F, T} only with regard to the capacities. (Hint: just add the capacities of all the forward edges.)

d) Draw this flow network below:

e) Determine the maximum flow of this network. Please show each augmenting path that you add and the order that you add each path in the chart below.

	Added Path (list each vertex in the path)
	Flow Added(value)

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

2) (10 pts) An iterative permutation algorithm was taught in class that starts with the permutation 1, 2, 3, …, n and iterates through all n! permutations in a "numerical" order, until it reaches n, n-1, n-2, …, 1, the last permutation. According to this algorithm, what permutation follows the permutation 8, 3, 5, 12, 1, 6, 11, 10, 9, 7, 4, and 2?

___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___ , ___

3) (10 pts) Using Prim's algorithm starting at vertex G, determine a minimum spanning tree (and its weight) of the graph described by the "weighted" adjacency matrix below:

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0
	8
	6
	12
	(
	(
	(
	(

	B
	8
	0
	3
	9
	15
	7
	(
	4

	C
	6
	3
	0
	5
	4
	5
	12
	4

	D
	12
	9
	5
	0
	5
	(
	(
	5

	E
	(
	15
	4
	5
	0
	4
	9
	7

	F
	(
	7
	5
	(
	4
	0
	13
	14

	G
	(
	(
	12
	(
	9
	13
	0
	11

	H
	(
	4
	4
	5
	7
	14
	11
	0

In your answer below, list the order in which each edge is considered, and whether or not it's added to the MST. Always consider edges that have the same weight in "alphabetical order." Namely, consider edge BF before edge CD. Also, always name edges with the earlier letter first. Thus, don't name an edge FB or DC. List all the edges in the final MST as well as the sum of the weights of those edges. (Note: This adjacency matrix represents and undirected graph. Thus, the edge weight from a vertex X to a vertex Y is the same as the edge weight from vertex Y to vertex X.) Please use the chart below:

	Edge Considered
	Added? (Yes/No)
	Reason Not Added

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

MST weight = _________

4) (20 pts) Use the Matrix Chain Multiplication algorithm shown in class to determine the minimum number of multiplications to find the matrix product ABCDE, when the matrices A, B, C, D and E have the following dimensions:
A: 2x4,
B: 4x1,

C: 1x5,
D: 5x3,
E: 3x2

In order to get full credit you must complete the chart below which stores intermediate answers. Do not fill in any of the squares with X's. These are to be left blank. Please include any work below the chart.

	
	A
	B
	C
	D
	E

	A
	X
	
	
	
	

	B
	X
	X
	
	
	

	C
	X
	X
	X
	
	

	D
	X
	X
	X
	X
	

	E
	X
	X
	X
	X
	X

5) (10 pts) The Knuth-Morris-Pratt algorithm uses a failure function to speed-up the algorithm. Compute this failure function for the pattern "bbabbabab"

	j
	0
	1
	2
	3
	4
	5
	6
	7
	8

	P[j]
	b
	b
	a
	b
	b
	a
	b
	a
	b

	f(j)
	
	
	
	
	
	
	
	
	

6) (5 pts) Consider a connected graph with 20 vertices and 70 edges. What is the largest possible clique this graph could have? Justify your answer.
7) (10 pts) What is the running time of the function below in terms of n, where the input array is of size nxn? Give a theta bound. Justify your answer.

public int Q7(int[][] matrix) {

 int i=0, j=0;

 while (i < matrix.length) {

 while (j <matrix.length && matrix[i][j] == 1)

 j++;

 i++;

 }

 return i;

}

Running Time: ________________

8) (15 points) Devise a polynomial-time reduction from the Vertex Cover problem to the Clique problem. The input to the Vertex Cover problem is an undirected unweighted graph G and an integer k. The goal is to determine whether or not G has a vertex cover of size k. The input to the Clique problem is also an undirected unweighted graph G and an integer k. The goal is to determine whether or not G has a clique of size k. To do your reduction, you must take as input a graph G and an integer k for the Vertex Cover problem, and then produce a new graph G' and a new integer k' to be inputs to the Clique problem, such that Vertex-Cover(G, k) = Clique(G', k') for all G and k. Then informally prove why your reduction works. (Hint: When considering a specific vertex cover in a graph, think about what is true of all the vertices that ARE NOT in the vertex cover. Also, the complement of a graph G is a graph with the same exact vertices, but one with all the "opposite" edges. This means that if an edge exists between to vertices in G, it isn't in the complement graph and vice-versa.)
9) (5 pts) By what initials are the Vertex Cover problem known? ________

Scratch Page – Please clearly mark any work you would like graded on this page.
