COP 3530 Spring 2005

Computer Science III (COP 3530)

Final Exam

May 2, 2005

Name: __________________

(Directions: The true/false questions will be graded only on the answer you circle. Thus, please clearly circle your answer. Since credit is deducted for incorrect answers, please leave questions blank if you are unsure of the answer. The score for this section can not go below 0. Thus, if you get more questions wrong than right on this section, your score will simply be 0 for the section. For all other questions, please justify your answer. No answer, even if it is correct, will be given full credit without the proper justification.)

1) (50 pts) Circle the correct answer. (Correct = +2, Blank = 0, Incorrect = -2.)

a) A binary search on a sorted array of n

True

False
values runs in O(n2) time.

b) log10n = O(n0.0001)

True

False
c) If A and B are independent events, then

True

False
P(A (B) = P(A)(1-P(B)) + P(B).

d) The 100th term in an arithmetic sequence

True

False
with the first term 6 and a common

difference of 3 is 300.

e) In a binary counter, (which you implemented

True

False
in lab #2) the average number of bits flipped

to do a single increment is approximately 2.

f) The solution to the following recurrence

True

False
relation: cn = cn-1+n, c0=0 is cn = n2.

g) Let Fn represent the nth Fibonacci number.

True

False
Fn = O(n100).

h) These four conditions are equivalent:

True

False
 1) T is a tree (with n vertices)

 2) T is connected and acylic

 3) T is connected and has n-1 edges.

 4) T is acyclic and has n-1 edges.

i) A Depth First Search is typically implemented

True

False
 iteratively.

j) A Disjoint Set can be implemented using an

True

False
 array

k) Using brute force, one only has to search through

True

False
 40,320 arrangements of the Four Queens

 problem to solve it.

l) One can multiply two n-bit numbers in O(n1.6)

True

False
 time. Note: log23 < 1.6.

m) Any nxn square with n>3 can be tiled with

True

False
 trominos, designed like the ones in the text

 in section 5.1

n) Strassen's matrix multiplication algorithm

True

False
 runs in ((n3) time when multiplying two

 nxn matrices.

o) More than 7 comparisons are necessary to

True

False
 sort 5 values.

p) Prim's Algorithm always finds the same

True

False
 minimum spanning tree as Kruskal's.

q) There are 12 ways to make change for a

True

False
 quarter using dimes, nickels and pennies.

r) The run-time for the dynamic programming

True

False
 solution of the Knapsack problem is O(n2)

 where n is the total number of items to

 choose from.

s) The solution to the Longest Common

True

False
 Subsequence problem we covered in

 class can be used to solve the "Testing

 the Catcher" problem we solved in class.

t) The Boyer-Moore Algorithm requires the

True

False
 precomputation of the last occurrence of

 each character in the text.

u) Let the string w be a substring of the string s.

True

False
 Let t be another string. Then it follows that

 the edit distance between s and t is greater

 than or equal to the edit distance between

 w and t.

v) The maximum number of augmenting paths

True

False
 that can be found using the Ford-Fulkerson

 algorithm is proportional to n, where n is the

 number of vertices in the flow network.

w) On a complete graph, Bellman-Ford's algorithm

True

False
 has the same (run-time as Floyd-Warshall's

 algorithm.

x) Given a list of requests to schedule a single room,
True

False
 if one wants to maximize the amount of time the

 room is reserved, a greedy algorithm can be used.

y) Bucket Sort works very well for clustered data.

True

False

2) (10 pts) (10 pts) The matrix below stores the adjacency matrix representation of a graph g. (Inf denotes the lack of an edge between vertices.) Use Dijkstra's algorithm to find the shortest paths from vertex A to all other vertices in the graph. Please fill in the matrix given to you below to execute the algorithm. The last row you fill in should contain all of the shortest path lengths.

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0
	13
	inf
	inf
	12
	inf
	2
	inf

	B
	2
	0
	10
	inf
	inf
	5
	inf
	6

	C
	inf
	12
	0
	1
	11
	4
	9
	2

	D
	inf
	inf
	8
	0
	1
	4
	7
	8

	E
	5
	inf
	3
	inf
	0
	2
	2
	6

	F
	inf
	7
	6
	4
	inf
	0
	9
	3

	G
	8
	10
	inf
	7
	11
	9
	0
	inf

	H
	inf
	5
	inf
	4
	8
	3
	6
	0

	Add to Set
	B
	C
	D
	E
	F
	G
	H

	A
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

3) (5 pts) The Knuth-Morris-Pratt algorithm uses a failure function to speed-up the algorithm. Compute this failure function for the pattern "bbabbabab"

	j
	0
	1
	2
	3
	4
	5
	6
	7
	8

	P[j]
	b
	b
	a
	b
	b
	a
	b
	a
	b

	f(j)
	
	
	
	
	
	
	
	
	

4) (10 pts) Consider the following flow network described below with the source vertex A and the sink vertex F:

	
	A
	B
	C
	D
	E
	F

	A
	x
	20
	16
	x
	x
	x

	B
	x
	x
	12
	13
	x
	x

	C
	x
	x
	x
	10
	20
	x

	D
	x
	x
	x
	x
	x
	18

	E
	x
	8
	x
	6
	x
	15

	F
	x
	x
	x
	x
	x
	x

a) Draw the network.

b) Determine the flow of the network using the Ford-Fulkerson Algorithm. For each step, list the augmenting path used. Finally, draw final network, illustrating the flows through each edge when the maximal flow is achieved.

5) The World Series Problem is as follows: Given two teams, A and B that play m total games, (where m < 2n), where each game results in a victory for one of the two teams, what is the probability that A wins the series (ie. wins n games first)? We assume that A's probability of winning any single game is p, 0 < p < 1, thus, B's probability of winning any single game is q = 1-p. Define the function P(i,j) to be the probability that team A wins i games before team B wins j games. In particular, P(n,n) represents the probability that team A wins n games before team B does. Given this definition of P, we can actually determine a recursive formula for the function as follows:

P(i,j) = 1, if i=0 and j>0

 0, if j=0 and i>0

 pP(i-1,j)+qP(i,j-1), if i>0 and j>0

A few things to note here:

1) The function is NOT defined for i=0 and j=0. This is because you can't have a series where no games are played.

2) The logic behind the main recursive formula is as follows: To see if team A will win i games first or team B will win j games first, we find that with probability p, team A will win game 1. In these cases, A will only have to win i-1 games to win the series while team B will still have to win j games. If however, team A loses game 1, then team B will only have j-1 games to win the series and team A will still have to win i games. This option occurs with probability q. Adding these two disjoint options gives the total probability of team A winning i games before team B wins j games.

As you might assume, this recursive algorithm is inefficient. Write a dynamic programming method that determines P(i,j), where i and j are non-negative integers, with at least one of them being positive. Here is a prototype for your method:

// p is the probability that team A wins a single game. The

// function returns the probability that team A wins n

// games before team B does, ie. it returns P(n,n).

public static double World_Series(int n, int p);

Note: In your implementation, you should have a two-dimensional array, where each element stores a value of the form P(i,j).

Scratch Page - Please clearly label any work on this page you would like graded.

