COP 3530

Computer Science III

Exam #2

Lecturer: Arup Guha

TA: _______________

April 6, 2004

Name: ________________
(Directions: Please justify your answer to each question. No answer, even if it is correct, will be given full credit without the proper justification.)

1) Subset Sum

The subset sum problem is defined as follows: Given a set of integers S ={a0, a1, ... , an-1} and a target value T, determine whether or not some subset of the values in S adds up to T exactly.

Part A: Recursive Algorithm (10 pts)

Use recursion to write a solution to the subset sum problem. In particular, write a method with the following signature:

public static boolean subsetsum(int[] values, int k,

 int target);

In particular, this recursive method is supposed to solve the following problem:

Is there a subset of values from the set {ak, ak+1, ... , an-1} that adds up exactly to target?

(If there is, the method should return true, if there isn't the method should return false.)

Hint: Use the Divide-and-Conquer technique. In particular, consider whether or not the element in index k is in the subset that adds up to target. There are two options: either it is, or it isn't. Try both and see if either leads to creating a subset that adds up to the target.

public static boolean subsetsum(int[] values, int k,

 int target) {

}

Part B: Dynamic Programming Algorithm (10 pts)

Now, we will slightly adapt the problem by restricting all the values in the set S to be positive. (Thus, S = {a0, a1, ... , an-1} and ai > 0 for all integers i, 0 (i < n.) With this restriction, we can devise a dynamic programming solution to the problem (similar to the solution to the knapsack problem.) In particular, we will create a one-dimensional boolean array of size T+1. The entry in index i represents whether or not a subset of values from S adds up to i. Call this array InSet. Then we will initialize InSet[0] = true, and InSet[k] = false, for all k, 0 < k (T.

Use dynamic programming to write a method to solve this problem. The method signature is given to you below, along with some initial code.

Hint: Consider each element in the set S, one by one. For each element, update the array to indicate new sums that can be achieved by subsets that contain that particular element. This will be very similar to the solution to the knapsack problem.

public static boolean subsetsum(int[] values, int target) {

 boolean[] InSet = new boolean[target+1];

 InSet[0] = true;

 for (int i=1; i<=target; i++)

 InSet[i] = false;

 for (int element=0; element<values.length; element++) {

 }

 return InSet[target];

}

Part C: (10 pts)

Unfortunately, the dynamic programming solution from part B doesn't work for sets S where some of the integers in the set are negative. Suggest an alternative solution for this case that utilizes the solution from part B. (Note: no need to write any code at all. Simply describe the adjustments to the algorithm from part B that are necessary or how you would utilize the solution from part B to solve this slightly more general problem.)

(Hint: Partition the values in S into two sets U and V, where all the values in U are positive and all the values in V are negative.)

2) Sorting

Part A: Comparison Sorting (5 pts)

What is the minimum number of comparisons necessary to sort 10 numbers? Note that 10! = 3628800 and 221 = 2097152.

Part B: Radix Sort (5 pts)

Show the order of the values sorted below at the end of each iteration of the radix sort algorithm:

	Original Values
	1st Iteration
	2nd Iteration
	3rd Iteration
	Sorted List

	3874
	
	
	
	1631

	1926
	
	
	
	1926

	2624
	
	
	
	2274

	9971
	
	
	
	2624

	1631
	
	
	
	2628

	2274
	
	
	
	3874

	3966
	
	
	
	3966

	2628
	
	
	
	7271

	7334
	
	
	
	7334

	7271
	
	
	
	9971

Part C: Bucket Sort (5 pts)

Given that we are doing a bucket sort of 8000 values and all values are real numbers within the range [20, 100), in what bucket number (the buckets are numbered 0 through 7999) would the value 37.386 be placed?

3) Greedy Algorithms

Part A: Dijkstra's Algorithm (10 pts)

Trace through each iteration of Dijkstra's algorithm for the directed graph with the following adjacency matrix, using A as the source vertex. ((indicates no edge.)

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0
	5
	8
	2
	(
	(
	(
	(

	B
	6
	0
	1
	(
	5
	12
	(
	11

	C
	2
	(
	0
	3
	3
	10
	20
	(

	D
	(
	2
	4
	0
	9
	(
	(
	15

	E
	6
	3
	8
	(
	0
	3
	10
	6

	F
	9
	9
	(
	9
	(
	0
	1
	4

	G
	(
	(
	7
	7
	7
	7
	0
	1

	H
	(
	3
	8
	2
	7
	2
	4
	0

	Add to Set
	B
	C
	D
	E
	F
	G
	H

	A
	5
	8
	2
	(
	(
	(
	(

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

Part B:Fractional Knapsack (5 pts)

You have won a shopping spree at the local ABC liquor store. Unfortunately for you, they are limiting the weight of the alcohol you win. In particular, you are limited to 500 ounces of alcohol. You have decided that you want to maximize the monetary value of the alcohol you take. You can take any amount (that they have available) of any type of liquor they have. Here is what is in stock along with how much each is worth per ounce.

	Liquor
	Value per ounce
	Amount Available

	Captain Morgan's
	30 cents
	100 ounces

	Absolut
	40 cents
	350 ounces

	Petron
	75 cents
	100 ounces

	Jack Daniel's
	35 cents
	10 ounces

How much of each liquor should you take? What is the value of your winnings?

Part C: Minimum Spanning Tree (5 pts)

Use Kruskal's algorithm to find the minimum spanning tree of the graph with the following adjacency matrix:

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0
	5
	8
	2
	(
	(
	(
	(

	B
	5
	0
	4
	6
	5
	12
	(
	11

	C
	8
	4
	0
	8
	3
	10
	20
	5

	D
	2
	6
	8
	0
	9
	(
	(
	15

	E
	(
	5
	3
	9
	0
	3
	10
	4

	F
	(
	12
	10
	(
	3
	0
	5
	4

	G
	(
	(
	20
	(
	10
	5
	0
	7

	H
	(
	11
	5
	15
	4
	4
	7
	0

In your answer below, list the order in which each edge is considered, and whether or not it's added to the MST. List all the edges in the final MST as well as the sum of the weights of those edges.

4) Tracing Dynamic Programming

Name: _____________________________

Part A: Chained Matrix Multiplication (15 pts)

Calculate the minimum number of multiplications necessary to find the matrix product ABCDE. The dimensions of each of the matrices are listed below:

Matrix

Dimensions
A

2x5

B

5x1

C

1x6

D

6x3

E

3x4

A 2 dimensional grid is provided below.

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

Please use this space below to make all the necessary calculations. This work will be graded so please indicate what you are calculating clearly.

4) Tracing Dynamic Programming

Part A: Chained Matrix Multiplication (15 pts) Taken last Wednesday

Part B: Longest Common Subsequence (15 pts)

Use the dynamic programming algorithm shown in class to calculate the Longest Common Subsequence between these two sequences of numbers:

List 1: 16, 20, 18, 5, 18, 16, 18, 15, 9, 20, 5

List 2: 13, 20, 9, 5, 18, 16, 20, 15, 5

Please fill out the chart below to determine the length of the longest common subsequence. Then use the chart to reconstruct that sequence.

	
	13
	20
	9
	5
	18
	16
	20
	15
	5

	16
	
	
	
	
	
	
	
	
	

	20
	
	
	
	
	
	
	
	
	

	18
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	

	18
	
	
	
	
	
	
	
	
	

	16
	
	
	
	
	
	
	
	
	

	18
	
	
	
	
	
	
	
	
	

	15
	
	
	
	
	
	
	
	
	

	9
	
	
	
	
	
	
	
	
	

	20
	
	
	
	
	
	
	
	
	

	5
	
	
	
	
	
	
	
	
	

5) (5 pts) What's the last name of the person who designed Dijkstra's Algorithm?

Scratch Page - Please clearly mark any work on this page you would like graded.

