COP 3530 Homework #2: Roadtrip!!!

Assigned: 1/31/05 (Monday)

Due: 2/16/05 (Wednesday)

You've just graduated from UCF with your computer science degree and are SICK of school! So, you decide that you are going to take the whole summer off and take a big road trip, visiting all of your friends across the USA. However, since you don't have a job yet, you are quite poor and would like to minimize the amount of driving you do. You are going to have to write one LAST computer program to help you determine the optimal order in which to visit all of your friends during your roadtrip.

To simplify the problem, let's assume that you are given (x,y) coordinates for your current location as well as the locations of all of your friends. Your job will be to determine an order to visit all of your friends in that minimizes the total distance traveled. (Note: you will add the distance it takes to get from your last destination back to home into this total distance.) For example, if you were located at (0,0) and you had three friends located in the following coordinates:

Fred
(10, 0)

Shelly
(-5, 5)

Bob
(0, 5)

then, one optimal order to visit the three would be Fred, Bob and Shelly, which would be a total traveling distance of 33.3 units, rounded to the nearest decimal place.

You will write two separate algorithms to solve this problem. The first will involve the permutation algorithm shown in class while the second will involve the backtracking technique shown in class. For both solutions, you will use the same input file format and output format. (Output will be to the screen.) The input file name will be roadtrip.in.

Input File Format

The first line of the input file has an positive integer n, the number of test cases in the file. Each test case follows on subsequent lines. The first line in each test case is a positive integer k (2 < k < 12) , the number of friends to visit for that particular road trip. The following k lines each contain a string, the friend to visit followed by two integers, the x and y (|x| < 1000, |y| < 1000) coordinates of where that friend is located. Each of these pieces of information will be separated by a single space. Assume that you always start at the coordinate (0,0). (This information will NOT be in the file.)

Sample Input File

2

3

Fred 10 0

Shelly -5 5

Bob 0 5

5

Angel 10 20

Barry -10 -20

Cynthia -10 20

David 10 -20

Erin 0 -25

Output Format

For each test case, output three lines. The first line will simply mention which roadtrip in the file the following two lines are for. The format of this line will be as follows:

Roadtrip #m Output
where m ranges in between 1 and n inclusive.

The second line will list the order in which each of your friends is visited, separating each friend with a single space. The second line will have the following format:

Path: Name1 Name2 Name3 ... Namek

The third line will print out the distance of the road trip in miles, rounded to the nearest decimal. It will have the following format:

Total Distance traveled: X miles

Separate each output case with a blank line from the following case.

Sample Output (corresponding to the sample above)

Roadtrip #1 Output

Path: Fred Bob Shelly

Total Distance traveled: 33.3 miles

Roadtrip #2 Output

Path: Cynthia Angel David Erin Barry

Total Distance traveled: 127.1 miles

Part A: Permutation Algorithm

Write the permutation algorithm, considering each possible order of visiting your friends. For each possible order, calculate the total distance traveled. Simply output the minimum solution.

Part B: Backtracking Algorithm

Perform the backtracking by picking the next "friend" to visit, noting the current distance for the whole roadtrip. You can "stop" pursuing a possible path when the total distance accumulated for the partial path is greater than the total distance for a completed path already computed. For example, if you have stored that the best path is 50 miles, but just by visiting the first three places you exceed that value, do NOT try adding to that path. Remove the third place and search for the next as the possible third place.

Part C: Creating Data

Create two data sets to turn in with your solutions with the following criteria:

1) Turn in a data set that takes about the same time running both algorithms.

2) Turn in a data set that performs backtracking significantly faster than using the permutation algorithm. Why does this data set work much better for the backtracking algorithm only?

What to turn in

Email to your TA your source files for both your permutation solution and backtracking solution. Make sure both files are clearly labeled so your TA knows which file corresponds to which implementation. Finally, attach one input file that you have created with the two specified test cases above. Call this file roadtrip.in. In a fourth separate attachment, explain why the two test cases you chose end up running the same time and take less time respectively than the permutation algorithm.

