COP 3530 Homework #4 - Group (of 2) Homework

Assigned: 11/15/05 (Tuesday)

Due: 12/2/05 (Friday)

Problem: Traveling Superfan

You work for a sports magazine and they would like you to go to exactly one baseball game in every (pro) stadium in the country and return to your home town. Of course, your employer is cheap and they want you to minimize the cost of your trip. Given information about how much it will cost to travel between each city, your goal is to come up with a list of all the cities to visit in a particular order to minimize cost. Since this problem is difficult (NP-Hard), you will only be expected to come up with an algorithm that determines an approximate solution. You will essentially write three components to your program:

1) A path cost calclulator: This program will read in an input file of graphs, along with a file containing cycles and their costs in the graph, and output whether or not the information in the answer file is valid or not.

2) An algorithm for solving the program in instances where the graph obeys the triangle inequality. (Note: The triangle inequality simply says that the path from vertex a to b to c is always weighted greater than or equal to the edge from vertex a to vertex c.

3) An algorithm for solving the program for any arbitrary graph with positive edge weights.

Note: Assume that all edges have a finite positive integer edge weight, for all graphs. Also assume that all possible traveling salesman cycles will weigh less than 2 billion.

Implementation Details

You are free to try any approximation algorithm you'd like. Do any research you'd like and make up your own algorithm. The better it performs on our graphs, the better your score will be. (Thus, this assignment will be graded on only on coding style (comments, white space, etc.) and results. You will neither gain credit nor lose credit based on the type of algorithm you try. Anything is fair game.) Of course, the path cost calculator will be clearly specified below.

Input File Format (for parts 2 and 3)

The first line of the input file will contain a positive integer m, representing the number of graphs described in the file. m test cases will follow.

The first line of each test case will contain an integer n (1 < n < 101), representing the number of vertices for that particular graph. The next n lines will contain n non-negative integers each. The ith line in this set will contain n values representing the edge weight from vertex (i-1) to each other vertex, in numerical order. The ith value on the ith line will always be zero to signify that there is no cost to travel from vertex i-1 to vertex i-1. All other entries on each row will be positive. Also, each graph described will be undirected.

Output File Format (for parts 2 and 3)

For each test case, you will produce two lines of output. The first line will simply contain a permutation of the values 0, 1, 2, 3, ..., n-1. This represents the traveling salesman path for the corresponding input graph. Each value in the permutation should be separated by a single space. The second line should contain a single positive integer representing the total cost of the specified traveling salesman cycle.

Also, separate the output for each case with a blank line.

Sample Input File

2

4

0 5 8 4

5 0 3 6

8 3 0 10

4 6 10 0

6

0 15 13 1 25 7

15 0 12 33 18 9

13 12 0 17 19 30

1 33 17 0 24 21

25 18 19 24 0 17

7 9 30 21 17 0

Sample Output File

3 1 0 2

29

0 5 1 4 2 3

70

Note: The output above doesn't necessarily represent the ACTUAL optimal solution. It is a viable solution however. (Namely, the weights correspond to the traveling salesman paths described.)

Input File Format (for part 1)

Your program for part 1 should take in two files: one file with the format of the sample input file for parts 2 and 3, and the corresponding file with the answers stored in the format for the output file for parts 2 and 3. Your program should simply read in both of these files and output one of the following statements to the screen:

All cases are valid!

The following cases are invalid or incorrect: 

If the latter is outputted, follow it with a single line of all the test cases that did not work in numerical order separated by spaces. Test cases are numbered 1 through m, in order.

A case is invalid if a proper permutation doesn't appear (any repeated or omitted vertices). A case is incorrect if the given weight doesn't match the actual sum of edge weights of the circuit.

Sample Input Files (for part 1)

File of graphs

2

4

0 5 8 4

5 0 3 6

8 3 0 10

4 6 10 0

6

0 15 13 1 25 7

15 0 12 33 18 9

13 12 0 17 19 30

1 33 17 0 24 21

25 18 19 24 0 17

7 9 30 21 17 0

File of answers
3 1 0 2

29

0 5 1 4 2 3

71

Corresponding output:

The following cases are invalid or incorrect:

2

Turn-In Directions

Please turn in three java files for your group in the WebCT account of one of the group members. All three files should contain both group members' names in the comments. Peter will manually record the grade for both group members. The program that verifies answers should be called verifier.java. The program that outputs traveling salesman paths to a file for graphs that satisfy the triangle inequality should be called triangleTSP.java. Finally, the program that outputs traveling salesman paths to a file for graphs in general should be called TSP.java. The verifier program should ask the user to input the names of both the file storing the graph AND the file storing the corresponding answers. The latter two programs should prompt the user for the name of the input file storing all the graphs and the name of the file they would like the answers stored in.

