Computer Science III Spring 2003

Homework Assignment #2: Greedy and Dynamic Programming Techniques

Assigned: 2/27/03

Due: 3/13/03 by midnight over email to your TA
Part I: Task Scheduling

You will implement the greedy task scheduling algorithm discussed in section 5.1.2 of the text. In particular you will write a program that reads in an input file of tasks to schedule. Your program will then output the minimum number of rooms necessary to schedule all tasks to the screen. In order to get full credit for this part, you must implement the algorithm discussed in the text in addition to solving the problem correctly.

Input File Format

The first line of the input file will be an integer n, signifying the total number of tasks to be scheduled. The following n lines will contain information about each task. Each of these lines will have the following format:

task
starttime
finishtime

All times will be integers in between 0 and 1000, inclusive. (A lower number designates an earlier time, as you'd expect.) Each Task will be a string without spaces. There will be whitespace between each of the three pieces of information on each line. Here is an example input file:

10

ChessClub
300
450

Drama

130
600

Poetry

400
500

TV

100
800

Soccer

200
310

NatureClub
550
780

QuizBowl
790
940

Interact
600
850

Party

700
999

Ball

759
1000

You may assume that all finish times will be greater than all start times. Given the input file above, your program should output the following line:

You will need a minimum of 5 rooms to schedule the 10 tasks.

Your program should prompt the user initially for the name of the input file. Then your program should open and process this file and present the appropriate output to the screen.

Include this program in the class Task. This class needs a main method. The TA will test your code simply by compiling your class and running it with valid files.

Part II: Knapsack

Section 5.3.3 of the text describes a dynamic programming algorithm to solve the 0-1 knapsack problem. Use this algorithm to help a thief maximize the value of his loot. Your input will contain the maximum weight his "knapsack" can carry, along with the weight and worth of each item that could be taken. Your program should output the maximum value of the items the thief could steal. The input will be given in a file. Just as the first part of this assignment, you should prompt the user for the input file name, and then process this file and print the output to the screen.

Input File Format

The first line of the input will contain the maximum weight the knapsack can carry. This will be an integer. The second line of the input will contain n, the number of items the thief could steal. The next n lines will contain information about the ith item. The format of each line is as follows:

item
weight

value

Each item name will contain no spaces. Each weight will be an integer, and each value will be an integer as well. You may assume that all of these values will be positive. Here is an example input file:

70

7

CDs

3

200

TV

40

600

Necklace
1

80

Food

5

10

Painting
50

1000

Plate

21

500

CDPlayer
13

200

Given the input file above, your program should produce the output

The maximum value of loot for the 70 pound knapsack is $1480.

Include this program in the class Thief. This class needs a main method as well.

What to turn in

Email the two .java files Task.java and Thief.java to your TA as attachments. Include ample comments in your code.

