
Lambdas 

 
First 2 definitions as a reminder.  
 
Interface - In Java, an interface is a reference type similar to a class that specifies a set of 
abstract methods that a class implementing the interface must provide their own implementation 
of. 
 
Abstract methods - An abstract method in Java is a method that is declared without an 
implementation.  
 
Any class that implements an interface must provide their own implementation for the methods 
specified by that interface. This is a way to achieve abstraction which if you remember from 
COP 3330, abstraction is one of the key principles of OOP. 
 
You can have methods in a class that have an interface as a parameter. You can then pass any 
object of a class that implements that interface and then use that class’ implementation. 
Lambdas allow us to pass in a specific implementation of an abstract method as a parameter 
instead of an object with its own implementation. This can only be done when the interface has 
a single abstract method (sometimes called a SAM interface). This makes the code much more 
concise.  
 
Without lambdas you would need to have a class that implements the interface, then provide an 
implementation for the abstract method of the interface, then create an object of that class 
which then we could pass into whatever method takes that interface as a parameter. This is a 
lot of extra work when all we really want to do is have a specific 1-time implementation for the 
abstract method.  
 
Lambdas can be written out as follows: 
 
(parameter1, parameter2) -> { /* code block implementing some abstract method */ } 
 
If there is only 1 parameter, the parentheses can be dropped.  
 
parameter1 -> { /* code block implementing some abstract method */ } 
 
If the code block is a 1-line return statement the curly braces, return, and semicolon can be 
dropped. 
 
(parameter1, parameter2) -> parameter1.compareTo(parameter2) 

 
One example of an interface with a single abstract method is the Comparable interface. Below 
is an example of passing a Comparable to the Collections.sort method. The first is not using 
lambdas and the 2nd which does. Notice how the “public int compare” part of the method gets 
dropped when implementing the function as a lambda.  
 

 

 

 



import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 

 
public class Main { 
    public static void main(String[] args) { 
        // Create a list of integers 
        ArrayList<Integer> list = new ArrayList<>(); 
        list.add(10); 
        list.add(5); 
        list.add(20); 
        list.add(15); 

 
        // Create a comparator to sort the list in descending order 
        Comparator<Integer> comparator = new Comparator<Integer>() { 
            @Override 
            public int compare(Integer o1, Integer o2) { 
                return o2.compareTo(o1); 
            } 
        }; 

 
        // Sort the list using the comparator 
        Collections.sort(list, comparator); 

 
        // Print the sorted list 
        for (Integer i : list) { 
            System.out.println(i); 
        } 
    } 
} 
With lambda 
import java.util.ArrayList; 
import java.util.Collections; 
import java.util.Comparator; 

 
public class Main { 
    public static void main(String[] args) { 
        // Create a list of integers 
        ArrayList<Integer> list = new ArrayList<>(); 
        list.add(10); 
        list.add(5); 
        list.add(20); 
        list.add(15); 

 
        // Sort the list using the comparator 
        Collections.sort(list, (o1, o2) -> {return o2.compareTo(o1);}); 

 
        // Print the sorted list 
        for (Integer i : list) { 
            System.out.println(i); 
        } 
    } 
} 



 

 


