Lambdas
First 2 definitions as a reminder.

Interface - In Java, an interface is a reference type similar to a class that specifies a set of
abstract methods that a class implementing the interface must provide their own implementation
of.

Abstract methods - An abstract method in Java is a method that is declared without an
implementation.

Any class that implements an interface must provide their own implementation for the methods
specified by that interface. This is a way to achieve abstraction which if you remember from
COP 3330, abstraction is one of the key principles of OOP.

You can have methods in a class that have an interface as a parameter. You can then pass any
object of a class that implements that interface and then use that class’ implementation.
Lambdas allow us to pass in a specific implementation of an abstract method as a parameter
instead of an object with its own implementation. This can only be done when the interface has
a single abstract method (sometimes called a SAM interface). This makes the code much more
concise.

Without lambdas you would need to have a class that implements the interface, then provide an
implementation for the abstract method of the interface, then create an object of that class
which then we could pass into whatever method takes that interface as a parameter. This is a
lot of extra work when all we really want to do is have a specific 1-time implementation for the
abstract method.

Lambdas can be written out as follows:

(parameterl, parameter2) -> { /* code block implementing some abstract method */ }

If there is only 1 parameter, the parentheses can be dropped.

parameterl -> { /* code block implementing some abstract method */ }

If the code block is a 1-line return statement the curly braces, return, and semicolon can be
dropped.

(parameterl, parameter2) -> parameterl.compareTo(parameter2)

One example of an interface with a single abstract method is the Comparable interface. Below
is an example of passing a Comparable to the Collections.sort method. The first is not using
lambdas and the 2nd which does. Notice how the “public int compare” part of the method gets
dropped when implementing the function as a lambda.



java.util.ArrayList;
jJava.util.Collections;
java.util.Comparator;

Main {
void main (String[] args) {

ArrayList<Integer> list = new ArrayList<>();
list.add(10) ;
) 7
0) 7
S) i

list.add (5
list.add (2
list.add (1

Comparator<Integer> comparator = new Comparator<Integer> () {
@Override

int compare (Integer ol, Integer o02) {
return o2.compareTo (ol) ;

1
Collections.sort (list, comparator):;

(Integer 1 : list) {
System.out.println (i) ;

With lambda
.util.ArrayList;
.util.Collections;
.util.Comparator;

Main {
void main (String[] args) {

ArrayList<Integer> list = new ArrayList<>();
list.add (10) ;

list.add (5) ;
list.add (20) ;
list.add(15) ;

Collections.sort (list, (ol, 02) {return o2.compareTo(ol);});

for (Integer i : list) {
System.out.println (i) ;







