
COP 3503 Recitation Worksheet: Divide and Conquer Algorithms

1) Skyline Merge Algorithm

Write a method that takes in two skylines (as two odd-sized integer arrays), and returns an integer

array representing the merged skyline. To make your code a little easier to write, you may assume

that ALL of the x coordinates in the two skyline are distinct; that only one building will start or

end at any given x coordinate. Also, you may return a skyline that has the same height at

consecutive segments. Here is the function prototype:

public static int[] mergeSky(int[] skyA, int[] skyB);

For example, if skyA = [2, 10, 5, 20, 8, 6, 20] and

 skyB = [3, 8, 10, 3, 25, 50, 30, 15, 40]

then the method should return

[2, 10, 3, 10, 5, 20, 8, 8, 10, 6, 20, 3, 25, 50, 30, 15, 40]

For clarity, the heights are highlighted in yellow.

2) Karatsuba’s Integer Multiplication Algorithm

Illustrate Karatsuba’s Algorithm to multiply the following integers:

I = 3298

J = 4167

Clearly show the 3 recursive multiplications that will occur. (Don’t break these down further

recursively, just show their results.)

Then, show HOW to combine those results appropriately to create the correct product.

3) Divide and Conquer Code – QuadTrees

A quadtree is a data structure to store an image. For simplicity, we assume the dimensions of the

image to be 2k x 2k, for some non-negative integer k. If each pixel in the whole image has the same

value, we store this entire picture as a single node with that value. On the other hand, if this image

has at least two distinct values in its pixels, we store no color value in the root node of the tree, but

instead store four pointers to the upper left, upper right, lower left and lower right quadrants of the

image. These pointers are simply pointing to quadtrees that represent that portion of the image.

This alternate storage scheme for a picture can be seen well visually. Imagine we have the

following 8 x 8 grayscale image:

129 129 78 78 255 255 255 255

129 129 78 78 255 255 255 255

30 40 40 40 255 255 255 255

40 30 40 40 255 255 255 255

0 0 0 0 91 91 93 93

0 0 0 0 91 91 93 93

0 0 0 0 94 94 94 95

0 0 0 0 94 94 95 96

Note: A grayscale pixel stores an intensity of shade as in integer, ranging from 0 (white) to 255

(black).

We would store this image as a quadtree as follows:

One useful computation for a grayscale image is the average intensity of its pixels. (This might

correspond to how much ink would be used to print it, for example.) Complete the method intensity

in the quadtree class on the next page so that it returns a double, corresponding to the average

value in the pixels of the designated quadtree image.

class quadtree {

 final public static int INTERNAL = -1;

 private int shade;

 private quadtree[] children;

 // Assume pic = 2^k by 2^k

 public quadtree(int[][] pic, int x, int y, int n) {

 if (same(pic, x, y, n)) {

 shade = pic[x][y];

 children = null;

 }

 else {

 shade = INTERNAL;

 children = new quadtree[4];

 children[0] = new quadtree(pic,x,y,n/2);

 children[1] = new quadtree(pic,x,y+n/2,n/2);

 children[2] = new quadtree(pic,x+n/2,y,n/2);

 children[3] = new quadtree(pic,x+n/2,y+n/2,n/2);

 }

 }

 // Requires that x >= 0, y >= 0, x+n <= pic.length, y+n <= pic.length

 public static boolean same(int[][] pic, int x, int y, int n) {

 int val = pic[x][y];

 for (int i=x; i<x+n; i++)

 for (int j=y; j<y+n; j++)

 if (pic[i][j] != val)

 return false;

 return true;

 }

 public double intensity() {

 if (________________________)

 return shade;

 double ans = 0;

 for (int i=0; i<4; i++)

 __ ;

 return ______________________;

 }

}

4) Consider running the closest pair of points algorithm on the 16 points shown below. Rather than

run the recursion on each group of 8 points, just calculate the answer for both sets of 8 points via

brute force. Then, illustrate which points would lie within the “middle strip” where we look for an

answer that’s better between the two sets of 8 points.

Here are the points, conveniently sorted by x-coordinate:

(3, 7), (4, 1), (6, 12), (7, 7), (10, 11), (10, 18), (13, 2), (15, 9),

(16, 8), (20, 17), (22, 12), (23, 1), (27, 11), (30, 5), (33, 20), (34, 2)

