COP 3503 Recitation #2 Problem

Problem

Your program will read in a dictionary without definitions into a hash table. Your hash table will be an array of linked lists. (Please use Java's LinkedList class discussed in section 3.3 in the text.) After your program has read in the dictionary into the hash table, your program will prompt the user for a word. You will then determine whether or not the word entered by the user is in the hash table or not and print out a message to that effect. You should allow the user to continue checking words until he/she wants to quit. Sample output showing roughly how your program should run is included below (Program output in italics, User input in normal font):

Welcome to the SpellChecker!

Enter the name of your dictionary file.

dictionary.txt

Great, your dictionary has been stored in memory.

What word would you like to check?

computer

computer is a valid word in the dictionary.

Would you like to check another word(yes=1,no=0)?

1
What word would you like to check?

prgoram

prgoram is not a valid word.

Would you like to check another word(yes=1,no=0)?

0
Thank you for using the SpellChecker!

HashTable class

Essentially, a HashTable object will store an array of linked lists. Through the hashing function, the unique hash location for any particular word can be determined. Thus, when inserting a word into the hash table, you must compute its hash table location. Then, insert this word into the appropriate linked list. When searching for a word, simply compute the hash location for that word, and search through the linked list at that location for the word. If it isn't there, the word isn't in the dictionary.

Here is a skeleton for the HashTable class:

public class HashTable {

 final private static int TABLE_SIZE = 59999;
 private LinkedList[] table; // Stores words.
 public HashTable() {//insert code}

 public void insert(String w) {//insert code}

 private int hashFunction(String w) {//insert code}

 public boolean search(String w) {//insert code}

 public static void main(String[] args) throws IOException {//insert code}

}

Here is the hash function I would like you to implement:

Let the word to be hashed be w1w2...wn where each wi 1 (i (n, is a single character. Also, let ascii(x) be the ascii value of the character x.

f(w1w2...wn) = [acsii(w1)*ascii(w2)*...*ascii(wn)] mod 59999
As the function indicates, your array size for your hash table should also be 59999. Also keep in mind that when you do this computation, watch out for overflow error. You'll have to think of a way to prevent it.

Here is a small example:

Consider inserting the word "dog" into the hash table:

ascii('d')*ascii('o')*ascii('g') mod 59999 = 100*111*103 mod 59999

 = 1143300 mod 59999

 = 3319

So, you would then store the word dog in the linked list table[3319].
method main

In main you will take care of prompting the user for the name of the dictionary file. In order to test your program, you must copy the dictionary file posted on the web page to your local directory and read from that file to fill up your hash table, or just create your own dictionary. (Note: your main should contain a single HashTable object.) Once you have finished that, go ahead an prompt the user as designated in the sample output. Make all the necessary HashTable method calls to complete your task.

What to turn in

Turn in the file HashTable.java over WebCT. Please follow all the specifications (names of classes and methods given above.) DON'T FORGET TO PUT ADEQUATE COMMENTS IN YOUR CODE!!!
