COP 3503 Summer 2002

Computer Science II

Final Exam

July 29, 2002

Name : __________________

1) (12 pts) In class we showed that the fixHeap method runs in O(n) for an input of any n values. In particular, we showed this by counting the maximum number of swaps possible in the fixHeap method. Assuming that n=2k-1, where k is a positive integer, derive a summation that is equal to the maximum number of swaps executed by the fixHeap method running on n values. Do not solve your summation. Your summation should be in terms of k. (Of course, you should also have a summation index different from k in your expression.)

2) (8 pts) Consider a file that only contains two distinct characters. Can Huffman coding compress the file at all? If so, assuming that the frequencies of the two characters are f1 and f2, how many bits can Huffman coding save? If not, how can we use the idea of Huffman coding to compress the file?

3) (12 pts) The following program with the recursive method print is supposed to print out all the four digit decimal integers from 0000 to 9999.

import java.io.*;

public class PrintAll {

 public static void print(int[] start, int rest) {

 if (rest > 0) {

 int i;

 int[] newstart = new int[start.length+1];

 for (i=0; i<start.length; i++)

 newstart[i] = start[i];

 for (int j=0; j<10; j++) {

 }

 }

 else

 printarray(start);

 }

 public static void printarray(int[] arr) {

 for (int i=0; i<arr.length; i++)

 System.out.print(arr[i]);

 System.out.println();

 }

 public static void main(String[] args) throws IOException {

 int[] a = new int[0];

 print(a, 4);

 }

}

a) Fill in the two lines of code above to make the program work as intended.

b) In the method print, what is the significance of the formal parameter start?

c) In the method print, what is the signifcance of the formal parameter rest?

d) Given the value of rest for a particular call of print, can you tell how many recursive calls that one call will spawn? If so, how many, in terms of rest? If not, why not?

4) (5 pts) Place in order of growth the following 10 functions, placing the smallest growing function first:

a) a(n) = n2 - 10nlgn

b) b(n) = 10000n

c) c(n) = n/(lg n + n0.5)

d) d(n) = lg (lg n)

e) e(n) = 2n + 20

f) f(n) = ((lg n)
g) g(n) = ((n/lg n)

h) h(n) = n1.2/ lg n

i) i(n) = 1.52n - 30

j) j(n) = nlg2n

_____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____ , _____

5) (12 pts) Consider being given a Graph class that stores weighted undirected graphs. Here is a incomplete class definition:

public class Graph {

 private Edge[] edges;

 private int numedges;

 private int numvertices;

 public Graph(); // Creates an empty graph object.

 public boolean hasCycle(); // Returns true iff the graph object contains a cycle.

 public void addedge(Edge e); // Adds the edge e to the graph, along with any new

 // vertices the edge introduces to the graph.

 public void sortEdges(); // Sorts the Edge array in ascending order by edge weight.

 public void deleteLastEdgeAdded(); // Deletes the last edge added to the graph with

 // with the addedge method.

}

Write a method Kruskal to add to the Graph class. This method should return a Graph object that represents a minimum spanning tree obtained from the current graph object, using Kruskal's algorithm. (You may assume that there exists an MST in the current graph object.)

public Graph Kruskal() {

 Graph mst = new Graph();

 }

6) (12 pts) Consider the problem of finding the greatest integer less than or equal to the square root of a given positive integer n. One way to solve this problem would to do a binary search in between 1 and n. Write a static method that takes in a positive integer n, and returns the greatest integer less than or equal to the square root of n, using the method outlined above:

public static int squareRoot(int n) {

}

7) (10 pts) The matrix G below stores the adjacency matrix representation of a graph G. (Inf denotes the lack of an edge between vertices.) Use Dijkstra's algorithm to find the shortest paths from vertex A to all other vertices in the graph. Please fill in the matrix given to you below to execute the algorithm. The last row you fill in should contain all the shortest path lengths.

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0
	12
	inf
	inf
	5
	inf
	8
	inf

	B
	12
	0
	15
	inf
	inf
	7
	inf
	5

	C
	inf
	15
	0
	8
	3
	6
	2
	inf

	D
	inf
	inf
	8
	0
	inf
	4
	7
	4

	E
	5
	inf
	3
	inf
	0
	inf
	2
	8

	F
	inf
	7
	6
	4
	inf
	0
	9
	3

	G
	8
	inf
	2
	7
	2
	9
	0
	6

	H
	inf
	5
	inf
	4
	8
	3
	6
	0

	Add to Set
	B
	C
	D
	E
	F
	G
	H

	A
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

8) (9 pts) Solve the following recurrence relations with Big_Oh bounds. Please circle your answer.

a) T(n) = 5T(n/2) + O(n2)

b) T(n) = 8T(n/2) + O(n3)

c) T(n) = 8T(n/3) + O(n2)

9) (15 pts) Consider the code for a Heap class below:

import java.io.*;

import java.lang.Math;

import java.util.Random;

public class Heap {

 private int[] heaparray;

 private int size;

 public Heap() {

 heaparray = new int[100];

 size = 0;

 }

 public Heap(int[] values) {

 heaparray = new int[values.length+1];

 for (int i=1; i<heaparray.length; i++)

 heaparray[i] = values[i-1];

 size = values.length;

 }

 public void fixHeap() {

 // Fill in code.

 }

 public void percolateDown(int index) {

 if ((2*index+1) <= size) {

 int min = minimum(heaparray[2*index],2*index,

 heaparray[2*index+1], 2*index+1);

 if (heaparray[index] > heaparray[min]) {

 swap(index, min);

 percolateDown(min);

 }

 }

 else if (size == 2*index) {

 if (heaparray[index] > heaparray[2*index])

 swap(index,2*index);

 }

 }

 public void percolateUp(int index) {

 if (index > 1) {

 //fill in code here.

 }

 }

 public void insert(int value) {

 if (size+1 == heaparray.length) {

 int[] temp = new int[2*heaparray.length];

 for (int i=1; i<heaparray.length; i++)

 temp[i] = heaparray[i];

 heaparray = temp;

 }

 // Fill in code here.

 }

 public void printHeap() {

 for (int i=1; i<=size; i++)

 System.out.print(heaparray[i]+" ");

 System.out.println();

 }

 public void swap(int index1, int index2) {

 int temp = heaparray[index1];

 heaparray[index1] = heaparray[index2];

 heaparray[index2] = temp;

 }

 public int minimum(int a, int indexa, int b, int indexb) {

 if (a < b)

 return indexa;

 else

 return indexb;

 }

}

Fill in the code for the three incomplete methods. The names of the methods should specify their function. Ask if any of these are unclear.

public void fixHeap() {

}

public void percolateUp(int index) {

 if (index > 1) {

 }

 }

public void insert(int value) {

 if (size+1 == heaparray.length) {

 int[] temp = new int[2*heaparray.length];

 for (int i=1; i<heaparray.length; i++)

 temp[i] = heaparray[i];

 heaparray = temp;

 }

}

10) (5 pts) What anagram of CPU is an item typically used to consume beverages? _____

Place any extra work you would like graded on this sheet. Please label which question you are answering.

