Computer Science II (COP 3503)

Exam #3

Fall 2006

Name: ___________________

November 6, 2006

Lecturer: Arup Guha

Grade : _____ / 75
1) (15 pts) The adjacency matrix below stores the capacities for a flow network. Answer the questions that follow the adjacency matrix. All vertices that are not connected by an edge are denoted by a 0.

	
	S
	A
	B
	C
	D
	E
	F
	T

	S
	0
	15
	5
	10
	0
	0
	0
	0

	A
	0
	0
	0
	0
	6
	10
	0
	0

	B
	0
	0
	0
	0
	0
	0
	9
	0

	C
	0
	0
	0
	0
	7
	0
	6
	0

	D
	0
	0
	0
	0
	0
	0
	0
	15

	E
	0
	0
	5
	0
	0
	0
	0
	4

	F
	0
	0
	0
	0
	0
	0
	0
	8

	T
	0
	0
	0
	0
	0
	0
	0
	0

a) What vertex is the source of this flow network? ____

b) What vertex is the sink of this flow network? ____

c) Calculate the value of the cut {S, A, B, C} and {D, E, F, T} only with regard to the capacities. (Hint: just add the capacities of all the forward edges.)

d) Draw this flow network below:

e) Determine the maximum flow of this network. Please show each augmenting path that you add and the order that you add each path in the chart below.

	Added Path (list each vertex in the path)
	Flow Added(value)

	
	

	
	

	
	

	
	

	
	

	
	

	
	

	
	

Max Flow = _________________
2) (10 pts) Using Prim's algorithm starting at vertex G, determine a minimum spanning tree (and its weight) of the graph described by the "weighted" adjacency matrix below:

	
	A
	B
	C
	D
	E
	F
	G
	H

	A
	0
	8
	6
	12
	(
	(
	(
	(

	B
	8
	0
	3
	9
	15
	7
	(
	4

	C
	6
	3
	0
	5
	4
	5
	12
	4

	D
	12
	9
	5
	0
	5
	(
	(
	5

	E
	(
	15
	4
	5
	0
	4
	9
	7

	F
	(
	7
	5
	(
	4
	0
	13
	14

	G
	(
	(
	12
	(
	9
	13
	0
	11

	H
	(
	4
	4
	5
	7
	14
	11
	0

In your answer below, list the order in which each edge is considered, and whether or not it's added to the MST. Always consider edges that have the same weight in "alphabetical order." Namely, consider edge BF before edge CD. Also, always name edges with the earlier letter first. Thus, don't name an edge FB or DC. List all the edges in the final MST as well as the sum of the weights of those edges. (Note: This adjacency matrix represents and undirected graph. Thus, the edge weight from a vertex X to a vertex Y is the same as the edge weight from vertex Y to vertex X.) Please use the chart below:

	Edge Considered
	Added? (Yes/No)
	Reason Not Added

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

MST weight = _________

3) a) (5 pts) Given two polynomials
[image: image1.wmf]å

=

=

n

k

k

k

x

a

x

f

0

)

(

and
[image: image2.wmf]å

=

=

n

k

k

k

x

b

x

g

0

)

(

, what is the run-time of determining f(x)*g(x) in the standard manner in terms of n, assuming that each scalar addition, subtraction, multiplication and division take constant time? (Also assume that all ak's and bk's are real-valued constants.)
b) (10 pts) Make an improvement (with respect to asymptotic run-time) to the standard algorithm using divide and conquer. Describe this algorithm. What is its run time in terms of n?
4) (30 pts) Complete the method below so that it properly implements Dijkstra's algorithm. The method takes in the adjacency matrix of the graph (guaranteed to have non-negative integer values only) in question, as well as an integer source (in between 0 and n-1, where n represents the number of vertices in the graph), and returns an integer array, storing the shortest distance from the source vertex to each vertex from 0 to n-1. For example, in a graph with 4 vertices with the source designated as vertex 2, if the shortest distance from vertex 2 to 0 was 5, from vertex 2 to 1 was 7, and from vertex 2 to 3 was 12, then the array returned would be of length four, storing 5, 7, 0, and 12, respectively. (Assume that all shortest distances are less than 1000000000.)
final static int MAXINT = 1000000000;

public static int[] dijkstra(int[][] adj, int source) {

int[] estimates = new int[adj.length];

for (int i=0; i<estimates.length; i++) estimates[i] = MAXINT;

estimates[source] = 0;

// Keep track of which vertices have been added to S.

boolean[] chosen = new boolean[estimates.length];

for (int i=0; i<chosen.length; i++) chosen[i] = false;

for (int i=0; i<estimates.length-1; i++) {

int vertex = 0;

int bestseen = MAXINT;

// Fill in code in the body of this for loop to find the next vertex to add to S.

for (int j=0; j<estimates.length; j++) {

}

chosen[vertex] = true;

// Fill in code in the body of this loop to update estimates array.

for (int j = 0; j<estimates.length; j++) {

}

}

return estimates;

}
5) (5 pts) Of what nationality is the cuisine served at Royal Thai and Thai House? ______
Scratch Page – Please clearly label any work on this page you would like graded.
_1139919379.unknown

_1139919415.unknown

