COP 3503H Fall 2004

Final Exam

12/8/04

Name: __________________

1) True/False (15 points) - 1 pt for a correct response, 0 for no response, -1 pt for an incorrect response. The minimum score you can receive on this question is 0. (This is what you would get if you got more answers incorrect than correct.) Circle the correct answer. Any ambiguous answers will be counted as incorrect responses.

a) 3n + 7 = O(n2)

True

False

b) n2 = O(3n+7)

True

False

c) n3 = ((10n3 + 720000)

True

False

d) lg(n10) = ((lg n)

True

False

e) lg(32n) = ((nlgn)

True

False

f) The number of permutations of the word ENGINE is 360.
True

False

g) In order to achieve an O(1) enqueue time, a linked list

True

False

 implementation of a queue MUST HAVE a pointer to

 both the front and back of the queue.

h) A perfectly balanced binary tree of 15 nodes has a height of 3.
True

False

i) A RB tree with a black height of 2 can have a total height of 5.
True
False

j) A 2-4 tree with 15 nodes can have a height of 4.

True

False

k) A binary heap can be implemented using an array.

True

False

l) Huffman coding yields the optimal prefix coding of a file.
True

False

m) If T(n) = 2T(n/2) + O(n), then T(n) = O(n).

True

False

n) If T(n) = 4T(n/2)+O(n), then T(n) = O(n2).

True

False

o) The length of the longest non-increasing subsequence of the
True

False

 sequence 10, 5, 8, 3, 2, 9, 6, 9, 5, 4, 8 is 4.

2) (10 pts) A version of the subset sum problem is stated as follows: Given a set of positive integers S and a target value T, determine whether or not any subset of values from S adds up exactly to T. Write a recursive solution to the subset sum problem. Your method will take in a third parameter, lowindex, which will indicate that the set of values being considered from the array range from lowindex to the length of the array minus one.

// Pre-condition: values contains only positive values and

// target is a positive integer less than

// 10000, lowindex ranges from 0 to

// values.length, inclusive

// Post-condition: Returns true if and only if some subset

// of numbers stored in values in between

// index lowindex and index values.length-1

// add up exactly to target.

public static boolean subSumRec(int values[], int target,

 int lowindex) {

}

3) (15 pts) Write a boolean method to solve the subset sum problem that uses dynamic programming. (Hint: Create an auxiliary array of size T+1 where the entry in index i stores information about whether a subset that adds up to i has been "seen" yet. Also, consider the knapsack problem.) The method prototype is given to you below:

// Pre-condition: values contains only positive values and

// target is a positive integer less than

// 10000.

// Post-condition: Returns true if and only if some subset

// of numbers stored in values adds up

// exactly to target.

public static boolean subsetSum(int values[], int target) {

}

4) (10 pts) A file contains the following frequency of characters:

	Character
	Frequency
	Huffman Code

	A
	9
	

	B
	8
	

	C
	45
	

	D
	3
	

	E
	50
	

	F
	7
	

	G
	28
	

	H
	50
	

a) Construct the Huffman tree for this file below. Afterwards, add the Huffman codes for each of the characters in the chart above.

b) Assuming that the file was previously stored using three bit codes for each character, and that it takes no space to store the Huffman codes themselves, how many bits are saved when encoding this particular file using Huffman coding?

5) Sorting

a) (3 pts) What is the smallest number of comparisons necessary to sort 8 values using a comparison sort, regardless of the order of the input? (Hint: 210 = 1024 and 8! = 40320.)

b) (2 pts) Consider running Merge Sort on the array below:

	index
	0
	1
	2
	3
	4
	5
	6
	7

	value
	15
	3
	13
	7
	4
	9
	8
	12

What do the contents of the array look like right after the third call of the Merge method has completed?

	index
	0
	1
	2
	3
	4
	5
	6
	7

	value
	
	
	
	
	
	
	
	

c) (2 pts) Why does Quick Sort run faster than Merge Sort in practice in spite of the fact that the basic order analysis of Merge Sort indicates that it would be slightly more efficient than Quick Sort?

d) (3 pts) In a particular implementation of Radix Sort, each pass of the algorithm takes exactly 5n milliseconds, where n is the number of values being sorted. In a particular implementation of Quick Sort, the entire algorithm takes exactly 2nlog2n milliseconds. Let all the numbers being sorted be exactly d digits long, where d is in between 1 and 10, inclusive. Assuming that we are sorting 215 values, for what values of d would Radix Sort be faster? For what value of d would both algorithms take the same time? And for what values of d would Quick Sort be faster?

6) (5 pts) Determine the total number of ways to make change for 17 cents if the valid coins are 1 cent, 2 cents, 5 cents and 7 cents. Please fill out the table below as shown in class to show your work in answering the question:

	
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

	2
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	5
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	7
	1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Final Answer: _________

7) (10 pts) A Double-Ended Queue is a data structure that allows for both insertions and deletions from either the front or back of the structure. (Thus, four standard methods in a class that implements a Double-Ended Queue are InsertFront, InsertBack, RemoveFront, RemoveBack.) A partial skeleton implementing a Double-Ended Queue is given below. Complete the empty methods whose headers are in bold in the skeleton.

// Supports the four standard double ended queue operations.

import java.io.*;

public class DEQ {

 private DLLNode front; // Reference to front of DEQ

 private DLLNode back; // Reference to back of DEQ

 // Default constructor creates an empty DEQ object.

 public DEQ() {

 front = null;

 back = null;

 }

 // Inserts x into a node at the front of the DEQ.

 public void insertFront(int x) {

 }

 // Inserts a node storing w at the end of the DEQ.

 public void insertBack(int x) {

 DLLNode temp = new DLLNode(x); // Create a new node w/x.

 // Take care of inserting into an empty list.

 if (front == null) {

 front = temp;

 back = temp;

 }

 // Insert into the back, only adjusting back and temp references.

 else {

 back.next = temp;

 temp.prev = back;

 back = temp;

 }

 }

 // Removes and returns the first element in the DEQ.

 // If no such element exists, -1 is returned.

 public int removeFront() {

 if (front == null) // Case where no first element exists.

 return -1;

 // Store value to return.

 int retval = front.data;

 front = front.next;

 if (front == null) // Case were no elements are left.

 back = null;

 else

 front.prev = null; // Other case.

 return retval;

 }

 // Removes and returns the last element in the DEQ.

 // If no such element exists, -1 is returned.

 public int removeBack() {

 }
}

// This class stores a node to be used in a doubly linked list.

public class DLLNode {

 public int data;

 public DLLNode next;

 public DLLNode prev;

 public DLLNode (int x) {

 data = x;

 next = null;

 prev = null;

 }

}

8) (10 pts) You are given a two dimensional integer array of size nxn filled with 0's and 1's in such a way that each row of the array has all of its 1's preceding all of it's zeros. Here is an example of such an array of size 5x5:

	1
	1
	0
	0
	0

	0
	0
	0
	0
	0

	1
	0
	0
	0
	0

	1
	1
	1
	1
	0

	1
	1
	0
	0
	0

Write a function that takes in this type of two-dimensional array and returns the maximum number of 1's in any row. (You will be graded on the efficiency of your code. Only O(n) solutions, where n is the length of a single dimension of the matrix will receive full credit.) The prototype is provided for you below:

// Pre-condition: values is a square array storing

// only 0's and 1's, with all 1's

// preceding all 0's on each row.

// The number of rows is values.length.

// Post-condition: The maximum number of 1's in any

// row is returned.

public static int mostOnes(int[][] values) {

}

9) (10 pts) You have set up a hash table with 100 entries using separate chaining hashing. After inserting all the elements in your table, you end up having one linked list of length 1, one linked list of length 2, ..., and one linked list of length 100. Assuming that you are searching for one of the 5050 values stored in the hash table, and that each value has the same chance of being searched, determine the expected number elements you will have to search through in order to find an element in the hash table. (Note: You may assume that the expected number of elements you search through in a linked list of k values is (k+1)/2. Hint:
[image: image1.wmf]å

=

+

+

=

n

k

k

k

k

k

1

2

6

)

1

2

)(

1

(

. Also, to reduce your arithmetic, avoid multiplying values out. You'll see that lots of stuff cancels so that minimal calculations are necessary to obtain the final result.)

10) (5 pts) What color dress does Molly Ringwald's character Andie wear to the Prom in the movie Pretty in Pink? _________________

Scratch Page - Please clearly label any work on this page you would like graded.

Scratch Page - Please clearly label any work on this page you would like graded.
_1163862815.unknown

