COP 3503 Summer 2002

Computer Science II

Exam #2

July 10, 2002

Name: ________________

1) (30 pts) Consider a circular linked list class. A partial implementation is given below:

public class CircularLL {

 private Node front;

 public CircularLL() {

 front = null;

 }

 public void Delete(Node del) {

 if (front == null)

 return;

 if (front == front.next && del == front) {

 front = null;

 }

 else {

 Node temp = front;

 while (temp.next != del && temp.next!=front)

 temp = temp.next;

 if (temp.next == del) {
 temp.next = del.next;

 }

 }

 }

}

a) (5 pts) The delete given above is a slight modification to the code shown in class(7/8/02). In particular, the four areas highlighted in bold are the modifications. What are the purposes of each of these modifications?

b) (5 pts) It would actually make sense to change the Delete method above to one that returns a boolean value. Make the necessary changes to the code above to do this. Explain the meaning of the return value of this modified Delete method.

c) (15 pts) Write a method to add a node to the front of a CircularLL object. The parameter to the method should be a reference to the Node to add to the linked list. The prototype is given to you below.

public void addFront(Node add) {

}

d) (5 pts) What is the running time of the method above in terms of n, the size of the linked list? Would this running time change if we were inserting the node into the list to FOLLOW the front node?

2) (25 pts) Imagine creating a hash table where you dealt with collisions using backwards linear probing. This means that if there is a collision in array index n, the next index you try is n-1, followed by n-2, etc. after you reach 0, you wrap around to array index length-1. Here is a portion of code from a class to implement a hash table of integers:

public class HashTable {

 private int[] table;

 int numelems;

 final static int SIZE = 29;

 public HashTable() {

 table = new int[SIZE];

 for (int i=0; i<SIZE; i++)

 table[i] = 0;

 numelems = 0;

 }

 // Computes the index that the value x hashes to.

 public static int hashfunc(int x) {

 int val = 1;

 for (int i=0; i<Math.abs(x); i++)

 val = (2*val)%SIZE;

 return val;

 }

 public boolean full() {

 return (numelems == SIZE);

 }

 public boolean insert(int x) {

 // fill in code

 }

}

a) (5 pts) Write a mathematical formula f(x) expressing the hash function in terms of it's input, x.

b) (15 pts) Write the insert method employing the strategy outlined above. You may assume that an element in the HashTable is empty if the corresponding array element stores 0. If the hashtable is already full the method should return false and not execute the insert. Otherwise, the insert should be performed and true returned.

public boolean insert(int x) {

}

c) (5 pts) Using the hash function f(x) = (x2+3x)%29 for this table instead, find the array indexes that the values 3, 15, 16, 7, and 45 are stored in the hash table if they are inserted in that order. (Use the backwards linear probing described in part a.)

Value

Array Index
3

15

16

7

45

3) (20 pts) Add a method kthSmallest to the BinTreeNode class. The kthSmallest method will take in one parameter, k, and return an integer. In particular, the kth smallest integer should be returned. If k is negative or greater than the number of nodes in the tree, -1 should be returned. (Hint: Consider the idea behind QuickSelect. That idea should be implemented here as well.) Necessary code from the BinTreeNode class is included below:

public class BinTreeNode {

 private int data;

 private BinTreeNode left;

 private BinTreeNode right;

 // Creates a default node.

 public BinTreeNode() {

data = 0;

left = null;

right = null;

 }

 // Creates a single node storing x.

 public BinTreeNode(int x) {

data = x;

left = null;

right = null;

 }

 // Returns the number of integers stored in the binary tree with

 // the current object as the root.

 public int size() {

 int val = 1;

 if (left !=null)

 val+=left.size();

 if (right !=null)

 val+=right.size();

 return val;

 }

}

public int kthSmallest(int k) {

}

4) (10 pts) Given the AVL tree below, consider inserting the element 29. After this insertion and necessary "tree maintainance", what does the AVL tree look like?

20

 /
 \

 10
 30

 \ / \

 15 25 35

 / \

 23 27

5) (10 pts) Consider defining a class to store a Node for a doubly linked list. Here is a portion of the class:

public class DLLNode {

 private int data;

 private Node prev;

 private Node next;

 public DLLNode(int x) {

 data = x;

 prev = null;

 next = null;

 }

}

Write a method insertBack in the DLLNode class which takes in an integer and inserts a node storing that integer to the back of the doubly linked list. Note that this list can not be null. At the minimum, it stores one element already. Two lines of the method are provided for you.

 public void insertBack(int x) {

 DLLNode newnode = new DLLNode(x); // Creates new node to add.

 DLLNode temp = this; // Sets up temporary reference to use.

 }

}

6) (4 pts) What is the output of a postorder traversal of the binary search tree from question 4, before the 29 was inserted?

_____ , _____ , _____ , _____ , _____ , _____ , _____ , _____

7) (1 pt) The Cy Young award, given to the "best" pitcher in both the American and National Leagues, is named after what legendary pitcher?

Extra work page: Place any work you would like graded on this side of the page. Please clearly label which question(s) you are answering.

