COP 3503 Fall 2002

Computer Science II

Exam #2

October 10, 2002

Name : __________________

1) Consider the recursive method below:

public static int question1(int a, int b) {

 if (a == b)

 return a;

 if (a == 0)

 return b;

 if (b == 0)

 return a;

 if (a > b)

 return question1(a-b, b);

 return question1(a, b-a);

}

Consider executing the method call question1(13, 8).

a) (6 pts) What value does the method return?

b) (6 pts) Write down the parameters for each recursive call that is initiated by the call above. (Note: you may not use all the blank lines below for this question.)

Rec call 1: a ____ b ____
Rec call 2: a ____ b ____
Rec call 3: a ____ b ____

Rec call 4: a ____ b ____
Rec call 5: a ____ b ____
Rec call 6: a ____ b ____

Rec call 7: a ____ b ____
Rec call 8: a ____ b ____
Rec call 9: a ____ b ____

c) (3 pts) Give values of a and b such that the method call question1(a,b) would never terminate.

a = _____ b = _____

2) (15 pts) In class we looked at a dynamic programming implementation of the change problem. Instead of the allowable coins being 1 cent, 5 cents, 10 cents and 25 cents, let the allowable coins be 2 cents, 3 cents and 5 cents. Using these three coins, determine the number of ways to make change for 10 cents by filling out the table below, which corresponds to the work done by the dynamic programming implementation of this problem:

	cents
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	2
	0
	1
	
	
	
	
	
	
	
	

	3
	0
	1
	
	
	
	
	
	
	
	

	5
	0
	1
	
	
	
	
	
	
	
	

3) Let weighted graph G have the adjacency matrix given below (inf stands for no edge):

	
	v0
	v1
	v2
	v3

	v0
	0
	3
	4
	2

	v1
	1
	0
	inf
	5

	v2
	inf
	6
	0
	inf

	v3
	4
	inf
	5
	0

a) (5 pts) Draw a visual representation of G.

b) (12 pts) Consider running Floyd-Warshall's algorithm on the G. After the first iteration, (where we have considered all shortest paths through vertex v0), what does the shortest path matrix look like?

	
	v0
	v1
	v2
	v3

	v0
	0
	3
	4
	2

	v1
	1
	0
	
	

	v2
	inf
	
	0
	

	v3
	4
	
	
	0

4) (4 pts) Given a list of 15 values to sort using Quick Sort, what is the minimum number of times the Partition method can be called?

5) (10 pts) What is the output of running a partition (implemented with the code shown in class) on the following array:

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	7
	3
	4
	8
	5
	10
	2
	9
	6
	1

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	value
	
	
	
	
	
	
	
	
	
	

6) (12 pts) Using a shell sort with a gap sequence of 5, 3, 2 and 1, sort the numbers below:

	original
	9
	2
	19
	13
	8
	6
	1
	12
	7
	3
	5
	4

	5 sort
	
	
	
	
	
	
	
	
	
	
	
	

	3 sort
	
	
	
	
	
	
	
	
	
	
	
	

	2 sort
	
	
	
	
	
	
	
	
	
	
	
	

	1 sort
	1
	2
	3
	4
	5
	6
	7
	8
	9
	12
	13
	19

7) Answer the following questions concerning a Merge Sort of the values below:

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	16
	4
	2
	9
	7
	12
	8
	1
	13
	3
	15
	14
	10
	5
	11
	6

a) (5 pts) Show the contents of the array right after the third Merge has been executed.

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b) (5 pts) In the last Merge, two sorted lists of size 8 get Merged. What are these lists?

list 1 : ____ , ____ , ____ , ____ , ____ , ____ , ____ , ____

list 2 : ____ , ____ , ____ , ____ , ____ , ____ , ____ , ____

c) (10 pts) The code below performs an iterative version of Merge Sort for arrays of size 2n, where n is a positive integer. Fill in the blanks to make the code work.

import java.io.*;

import java.util.Random;

public class IterMerge {

 // Merge shown in class. No need to trace through this. Assume it

 // works as we discussed in class.

 public static int[] Merge(int[] first, int[] second) {

int totallength = first.length + second.length;

int[] answer = new int[totallength];

int firstcounter = 0;

int secondcounter = 0;

for (int i=0;i<answer.length;i++) {

 // Deciding whether to take next smallest number from

 // first array or second.

 if ((secondcounter == second.length) ||

 ((firstcounter < first.length) &&

 (first[firstcounter] < second[secondcounter]))) {

answer[i] = first[firstcounter];

firstcounter++;

 }

 else {

answer[i] = second[secondcounter];

secondcounter++;

 }

}

return answer;

 }

 public static void MergeSort(int[] numbers) {

 int nummerges =numbers.length/2;

 while (nummerges > 0) {

 for (int i=0; i<nummerges; i++) {

 int[] firsthalf = new int[numbers.length/(nummerges*2)];

 for (int j=0;j<firsthalf.length;j++)

 firsthalf[j] = numbers[firsthalf.length*2*i+j];

 int[] secondhalf = new int[firsthalf.length];

 for (int j=0;j<secondhalf.length;j++)

 secondhalf[j] =numbers[firsthalf.length*(2*i+1) + j];

 int[] answer = ________________________________;

 for (int j=0; j<2*firsthalf.length; j++)

 numbers[____________________________________] = answer[j];

}

nummerges = ____________________________ ;

 }

 }

}

d) (5 pts) Consider Merge Sorting the original array from part a using the Iterative Merge Sort given in part c. What would the array look like right after the third call to the Merge method?

	index
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	value
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

8) (2 pts) UCF's administration building, Millican Hall is named after which former UCF (technically FTU) president?

Scratch Page: Clearly label any work on this page that you would like graded.

