Spring 2007 Computer Science II Program 3 

Average Daily Temperate Queries

Assigned: Wednesday 2/21/07, 

Due: Monday 3/19/07, 11:55pm WebCT time

The Problem
You will be given access to average daily temperature data from many cities in both the US and outside of the US. Your job will be to write classes that will process queries of this data. A small part of the interface will be specified. You will write no main method to turn in – rather, your program will be graded using an independently designed main method. You can choose the number of classes and any extra methods you may add to those classes or the required class.
Goal of the Assignment

This assignment is different than previous assignments in the course. Two concerns brought up by the multiple cases of academic misconduct on Program #2 were the following:

(1) The assignment was too difficult.

(2) The assignment didn't mirror real-life tasks that programmers do.

(3) Since the assignment had been previously given, it was possible for some people to have access to the previously posted solution of the assignment.

I've tried to create an assignment that addresses each of these issues.

(1) This assignment is quite tedious, but because I am not specifying any implementation issues, there exists a relatively straight-forward solution to the problem.

(2) Your assignment will involve analyzing actual average daily temperature data. It's clear that this data and understanding it is very important to the future of public policy and our future on earth. Even if a student isn't personally interested in this subject matter, it should be evident to them that analyzing this data has potential practical uses.

(3) I have never given this assignment, and I tried to make some of the queries atypical so that it's unlikely that someone has a direct solution to the problem as I've posed it here.
Furthermore, one of the main practical goals of this class is for students to be able to take the information about data structures and algorithms they know and apply them to a real world problem without anyone specifying to them which data structures and algorithms should be used.

In most assignments for this class, you are given strict specifications (ie. create a class for this data structure, support these methods, etc.), but the specification for this assignment is quite vague. You must support several methods, but other than that, you are free to choose whatever data structures and associated algorithms you'd like to use to solve the problems at hand. Here is a list you can choose from but are not limited to: arrays, linked lists, binary trees, binary heaps, AVL trees, and hash tables, just to name a few. You can use more than one of these structures. The decision is completely up to you.

Since the assignment is open-ended and practical, it will be graded as a similar sort of assignment in the real world will be: first based on correctness and robustness, secondly based on its speed. The details of this will be discussed below.
Types of Queries supported

Here are the types of queries your code will need to support:

1) Given a city and a specific date (day, month and year), return the average temperature of that city on that day.

2) Given a city and a year, return the minimum average temperature achieved in that city during that year, as well as the day on which it occurred. Return all of this information in a single String object. (If there is a tie, specify the first day in the year the minimum temperature was achieved.)
3) Given a city and a year, return the maximum average temperature achieved in that city during that year, as well as the day on which it occurred. Return all of this information in a single String object. (If there is a tie, specify the first day in the year the maximum temperature was achieved.)
4) Given a city and a day, return the number of times the temperature has increased in between successive years on that day in between 1995 and 2006. (If the average temperature on that day is the same from one year to the next do NOT count that segment as increasing.)
5) Given a year, return the city with the greatest range of average daily temperatures. (The range of a city's average daily temperatures in a year, is defined as its maximum average daily temperature during that year minus the minimum average daily temperature during that year.)

6) Given a city and a year, return the average temperature of that city during that whole year. (This is simply calculated as the average value of all 365 or 366 daily average temperatures for that year.)

7) Given a city and a day, return the year in which the maximum temperature for that day occurred in the range 1995 to 2006 in that city.
WeatherQuery class specification

You are to create a class called WeatherQuery. Here is a listing of the required methods of the class:

// Creates a WeatherQuery object using citylist, which is

// the name of a file which contains a list of the cities

// that will be part of this WeatherQuery object. 

public WeatherQuery(String citylist);

// Returns the average temperature in the city with the

// code citycode on the date month/day/year.

public float aveTemp(String citycode, byte day, byte month, short year);
// Determines the minimum average temperature in the

// city with the code citycode in the year year and

// returns in String format, both the date and the

// corresponding minimum temperature. For example,

// if the minimum temperature for the year was 23.6

// degrees on February 12, then the String returned

// should be "2/12 23.6"

public String minAveTemp(String citycode, short year)

// Determines the maximum average temperature in the

// city with the code citycode in the year year. The
// return string should be the same format as that of

// minAveTemp

public String maxAveTemp(String citycode, short year);

// Returns the number of times in successive years that

// an increase of temperature occurred in the city with

// the code citycode on the day month/day from 1995 to

// 2006. For example, if the temps on 8/7 were

// 60, 62, 61, 63, 64, 62, 63, 62, 64, 65, 66, and 64,

// then the method should return 7.

public short numIncTemp(String citycode, byte day, byte month);

// Returns the city with the largest range of temperatures

// in the year year. Returns the actual name of the city

// instead of its code.

public String cityRange(short year);

// Returns the average of all the daily temperatures in 

// the city with the code citycode in the year year.

public float aveYearTemp(String citycode, short year);

// For the city with the code citycode, this method returns
// the year in which on the date month/day, the maximum

// temperature was recorded in between 1995 and 2006.

public short yearMaxTemp(String citycode, byte day, byte month);

File Format for the citylist AND the weather data files

The first line of the file will contain a single integer n, representing the number of cities in the file.

The next n lines will contain two pieces of information: a city code, followed by the name of the city. The two pieces of information will be separated by a semicolon. Note that the city code will always be 8 uppercase letters. The name of the city will contain both upper and lower case letters and may contain spaces and/or dashes. But no city name will contain a semicolon.

The actual data for each city will be stored in a separate file. In particular, if the citycode for a city is XXXXXXXX, then its weather data will be stored in XXXXXXXX.txt. For example, the citycode for Orlando is FLORLAND and thus, its data is stored in FLORLAND.txt.

The query methods take in the citycode, but one of the query methods must return the actual city name. Thus, your code must somehow maintain an association between these two items.

Here is the format for the weather data files:

Each line of the file has four pieces of information separated by white space: month, day, year, average temperature for that day.
Month is an integer in between 1 and 12, day is an integer in between 1 and 31, year is an integer in between 1995 and 2007 and temp is a float expressed in degrees with one digit after the decimal. The file is stored in chronological order.
Although the file runs until February 14, 2007, please ONLY store data from 1/1/1995 to 12/31/2006 when you read in the appropriate data in the WeatherQuery constructor.

Also, note that on some days in some cities, no average temperature was recorded. This is indicated by storing a -99 as the average temperature for that day. To deal with incomplete data, simply ignore that data. This works easily for queries #2 (assuming one of the years has data for each day), #3 (same as #2), #4 (just don't count the two sets of successive years that involve that year), #5 (just take the min's and max's from the temps that do exist), #6 (don't count these days into the average), #7 (just don't count those days, once again, we'll assume that there's data for each day in at least one of the years). To make query #1 work easily, define the following constant in your class:
final static float NO_DATA = -99;

Simply return NO_DATA for a #1 query if there is no data for the city and day being requested.

Other Implementation Specifications

You may not use any predefined class in Java that implement complex data types. These include any of the Collections or Lists as well as any of the Heaps or Trees. If you have questions about whether or not you should use an object of a prewritten Java class, please ask me before you get started for my approval.
Grading Details

Part of your assignment will be graded on correctness. We will call your methods and run them on files and queries of our choice. A certain number of points will be assigned for the correctness of your methods. Since all of our queries will be one right after another, if one query causes a crash, you will automatically get 0 credit for that query and all subsequent queries. Thus, be VERY, VERY careful for possible run-time errors! You may assume that for all of our queries, there will be at least one year on each day for each city that has valid temperature data.
Part of your assignment will be graded upon speed. We will run the same set of queries on each assignment and time how long they take to execute. Full credit will be given to implementations that take equal or less time than the TAs' implementation. Slower implementation will be given proportional credit. If a TA's implementation takes 20 seconds and yours takes 40 seconds, then you'll earn 50% of the points. If it turns out that this metric is too harsh, then I reserve the right to make the grading criteria more lenient.
Part of your assignment will be graded upon the basic ideas you utilized in your implementation. It is expected that you make use of the data structures discussed in this class and/or Computer Science I. You will earn full credit for this component if we deem your choice of data structures to be reasonable given the knowledge you are supposed to have and if you've attempted to implement the appropriate methods for those data structures.

Part of your assignment will be graded upon your style. As always, use of good variable names, use of white space, indenting and reasonable commenting will be graded.
Acknowledgement

All data used was acquired from: http://www.engr.udayton.edu/weather/.

You may download the data yourself, or get it from the course web page.

Deliverables

Turn in WeatherQuery.java and any other source files you used in your implementation. Make sure to add plenty of comments to your .java files so that your overall strategy for solving the problem will be evident to the grader without them scrutinizing your code. (Also, note that you make leave main methods in any of your files. You should definitely create them for testing purposes.) Furthermore, make sure you don't turn in ANY weather data files or files with the listing of cities. You may assume that we'll have the appropriate files in the same directory as all of your code when we test.
