COT 5405 Spring 2004 Programming Assignment #1

Assigned: Monday, 8/23/04

Due: Wednesday, 9/1/04

Problem: Maximum Sum (adaptation of acmuva problem #108)

The Problem

Given a 2-dimensional array of positive and negative integers, find the sub-rectangle with the largest sum. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle. A sub-rectangle is any contiguous sub-array of size 1x1 or greater located within the whole array. As an example, the maximal sub-rectangle of the array:

0
-2
-7
0

9
2
-6
2

-4
1
-4
1

-1
8
0
-2

is in the lower-left-hand corner:

9
2

-4
1

-1
8

and has a sum of 15.

The Input

The input consists of several NxN array of integers. The first line of the input is an single positive integer k, signifying the number of test cases. Each test case will follow. The first line of each test case will contain a single positive integer N indicating the size of the square two-dimensional array. This is followed by N lines that contain N integers each separated by white space. The kth line of input contains the values of the kth row of the array, in order. The numbers in the array will be in the range [-127, 127]. The input will be from the file "sum.in"

The Output

You will output a single line for each test case. The line will follow the following format:

Test case #i: The maximal sum is X.

where i represents the test case being processed, and X represents the maximal sum of that test case. The output should be to the screen.

Sample Input File

3

2

3 -1

-5 2

3

6 -2 3

5 1 -7

8 9 -2

4
0 -2 -7 0

9 2 -6 2

-4 1 -4 1

-1 8 0 -2

Sample Corresponding Output

Test case #1: The maximal sum is 3.

Test case #2: The maximal sum is 27.

Test case #3: The maximal sum is 15.

What to turn in

Please include the timing analysis of the algorithm you use in terms of n, the size of one dimension of the matrix. Also, see if you can verify that theoretical result by timing your algorithm on arrays of a few different sizes. Please provide ample data to prove your conclusions. (Note: The write a small utility program to create test data.)

Turn in your code (Java) to me over email(dmarino@cs.ucf.ed) as an attachment before class on Wednesday, September 1st. Please code up your solution in a single source code file.

Turn in your analysis and time results in class on Wednesday, September 1st, separate from turning in your code.

