Computer Science II Summer 2002

Homework Assignment #3

Assigned: 6/17/02 (Monday)

Due: 6/26/02 (Wednesday) by midnight over email to your TA

The Generic Store

You will simulate a store selling items to its customers using two queues. There will be an initial line that customers get queued into when they want to buy a product. When the user chooses to dequeue customers, then the customer at the front of the queue should be serviced (if there are no emergency customers.) If that customer can not be serviced at the time, (the only reason this would occur is if the store does not have enough of the product the customer wants to buy in stock), then they get added into the emergency queue. This queue, as mentioned before, holds customers whose orders could not initially be serviced. They have priority over the first queue. In particular, as SOON as the store has enough of the item needed to service the customer at the front of the emergency queue, they must be serviced the next time a dequeue is made.

Basic Format

The overall program will be menu driven. The user will get the following menu:

1) Enqueue a customer

2) Enqueue a supplier

3) Dequeue

4) Quit

If either choice 1 or 2 is made, you must ask the following questions:

1) What is your name? (Only ask this question for choice 1, not choice 2.)

2) What product are you buying/supplying?

3) What quantity to you want or are providing?

This information will then be used to create an object which will then be added to the initial queue.

If choice 3 is made, then first check to see if there is anyone in the emergency queue. If so, check to see if the store has the products necessary to service the customer. In this case, go ahead and do so. Otherwise, try to service the customer in the initial queue. If you can not do so, print out a message stating that the customer can not be serviced because the store has an insufficient stock. If the customer can be serviced then print out a message saying that they have. If the customer is a supplier, then their request can always be serviced since all you have to do is add to the items stocked. Of course, if the item is already in your list of items, you should add to the quantity of that item, and not stock a completely new item.

Here are examples of the types of messages that should be printed out in this option:

John from the emergency line bought 4 Bags of Doritos.

Sally could not be serviced from the initial line and has been added to the back of the emergency line.

Wayne from the initial line bought 2 Coca-Colas.

We have added 5 Coca-Colas to the stock.

Sorry, there are no customers in either line currently.

Each time this choice is chosen, a message with one of the five formats above must be printed out. (Note, for your assignment you do NOT have to follow the exact format given above. You just have to have five different types of messages that match the content of the messages listed above. Also you do NOT have to get the grammar with respect to plurals correct.)

Classes to use and write

Two classes, the Customer class and the Product class, will be provided for you. The Customer class isn't like a normal class. Rather it is basically no more than a new data type, such as a struct in C. There will be no associated methods with the Customer class except for the required constructor. Here is the code for the Customer class:

public class Customer {

 public String name;

 public boolean buyer;

 public String product;

 public int quantity;

 public Customer(String n, boolean buy, String p, int q) {

 name = n;

 buyer = buy;

 product = p;

 quantity = q;

 }

}

buyer should be set to true if the "person" is buying, and false if they are a supplier. If the object is storing a supplier, then name should be set to "supplier".

Store this in the file Customer.java

The Product class will be used to store and maintain information about one product in a store. Once a product object is created, you may add a quantity, buy a quantity of the product or retrieve the name of that product.

public class Product {

 private String productname;

 private int quantity;

 public Product(String n, int q) {

 productname = n;

 quantity = q;

 }

 public String getName() {

 return productname;

 }

 public void stock(int q) {

 quantity+=q;

 }

 // Returns true if the transaction was successful, false otherwise.

 public boolean buy(int q) {

 if (q <= quantity) {

 quantity -=q;

 return true;

 }

 return false;

 }

}

Now, you will create two classes. One will be a Queue class and the other a Store class. Here is an incomplete specification of the Queue class:

public class Queue {

 private Customer[] people;

 private int front;

 private int back;

 public Queue() {//fill in code}

 public void Enqueue(Customer c) {//fill in code}

 public Customer Front() {//fill in code}

 public Customer Dequeue() {//fill in code}

 public boolean Empty() {//fill in code}

}

In this class you should initialize the size of the array to 5. If an enqueue is made into a full Queue, then in the Enqueue method the array people should be doubled in size to allow for the enqueue to proceed.

Here is an incomplete specification of the Store class. You should probably add some methods that are not listed here:

public class Store {

 private Queue initial;

 private Queue emergency;

 private Product[] items;

 private int numitems;

 public Store();

 // Serves the next customer/supplier.

 public void Serve() {//fill in code}

 public static void main(String[] args) throws IOException {//fill in code}

}

The items array should be initialized to a size of 100 in the Store constructor. You may assume that no one will ever try to stock more than 100 distinct items. (So no need to accomodate for resizing the array items.) The variable numitems will keep track of the number of distinct items in the store and should be used to store the next location a new item would be added. If an item becomes sold out, then reclaim the space in the array for that item. (Easiest way to do this would be to copy the item stored in the last slot to the slot you want to delete from. The bad part here would be that searching in this item list would become an O(n) operation instead of a more efficient method of maintaining a sorted list. But, since you don't have too much time for this assignment, use this easier method.)

What to turn in

Turn in the files Store.java and Queue.java as attachments. Please follow all the specifications (names of classes and methods given above.) If you had Christine as a TA, I will tell you next Monday who to turn in your code to. DON'T FORGET TO PUT ADEQUATE COMMENTS IN YOUR CODE!!!

