Computer Science II Summer 2002

Homework Assignment #1

Assigned: 5/13/02

Due: 5/22/02 by midnight over email to your TA

Part I: Sorted List Matching Problem

You will write a method that solves the Sorted List Matching Problem utilizing the O(n) algorithm shown in class (5/13/02). Here is a prototype of the method you are to write:

//Preconditions: Both input parameters are arrays whose elements are distinct lowercase

// alphabetic Strings (these are strings without any non-alphabetic

//

 characters). Also, both arrays are sorted in alphabetic order.

//Postconditions: The method outputs each string that appears in both lists, one string

// per line, in alphabetical order.

public static void SortedListMatch(String[] list1, String[] list2);

Part II: Sorted List Union Problem

Now, write a method that takes in the same input parameters as in part I, but outputs a list of names that appears in either list, in alphabetical order. (Thus, if list one contained adam, carly, david, and lisa and list two contained bob, david, emily, and lisa, then your method should print out adam, bob, carly, david, emily, and lisa.) Simply adapt the algorithm from class to produce a new O(n) algorithm that solves this problem. Then, write the function whose prototype is given below to implement this algorithm:

//Preconditions: Both input parameters are arrays whose elements are distinct lowercase

// alphabetic Strings (these are strings without any non-alphabetic

//

 characters). Also, both arrays are sorted in alphabetic order.

//Postconditions: The method outputs each string that appears in either list, one string

// per line, without repeating any names, in alphabetical order.

public static void SortedListUnion(String[] list1, String[] list2);

Part III: A little algorithm analysis

Here is an algorithm to determine whether a number n is prime or not:

1) For each integer from 2 through the square root of n do the following:

a) Divide n by the integer.

b) If there is no remainder, output false and quit.

2) Output true, if not output has been given by this step.

The input for this problem is the integer n, written in binary. You may assume division in step 1a takes O(k) time, where k is the number of bits in the integer being divided into. (For this particular problem, that number is always n.)

a) Give an Big-Oh time bound for the running time of this algorithm, in terms of the input size. (Note that the input size is NOT n, but rather, n is the value of the input.)

(Extra Credit) b) Does the bound from above change if the input n is represented in unary? If so, what would be the new Big-Oh bound of this algorithm?

