Computer Science II Summer 2007
Homework Assignment #3: Your Last Sorting Assignment Ever!!!
Assigned: 6/13/07 (Wednesday)

Due: 6/27/07 (Wednesday)
You are very familiar with the sorting problem. You have seen many different sorting algorithms in both Computer Science I and this course. You have seen the theory behind how they work and how quickly they work. For this assignment, your goal will be to write your own sorting method that works as quickly as possible. Your grade will be based on four areas:

(1) The rationale behind the design of your algorithm

(2) Your correctness

(3) Your speed

(4) Programming style and documentation of your implementation

The only information you will have about the items you are sorting is the following:

(1) The items will be of type Comparable.

(2) There will be five test cases run for both speed and accuracy. Here is the number of items in each test: 100, 10000, 500000, 1000000, 5000000.

(3) The test cases will be generated before we look at your algorithm, so they won't be designed specifically to thwart your algorithm. BUT, they may not all be randomly generated either.

(4) Your algorithm's performance on each list will be weighted equally in the grading criteria.

Requirements

You must write your sorting method in the file Sort.java. It's prototype must be the following:

public static void MySort(Comparable[] items);

After your method executes, the array passed in as a parameter to the method should be sorted in non-descending order according to the appropriate compareTo method.

You may write other code in other methods and other classes if you wish.

More Grading Details

You must develop a text/Word document which states the rationale behind the design of your algorithm. This document will be worth 30 points of your grade. It is expected that you do a bit or research and thinking before you come up with this plan. After writing this plan and its justification down, you should implement your plan. During implementation, it is expected that you tweak your original idea through experimentation. Include details of what changes you tried and why and whether they helped or not in your planning document. Basically, this document should contain your original design, plus any changes you made as you actually implemented your algorithm, and how and why you put those changes into effect. Some of your grade will be based upon this document – part of the grade will come from your ideas and the other part will come from your ability to unambiguously express your ideas.

A good chunk of your grade will come from the five test cases; most likely 50 points out of 100. These will be graded on a linear scale against a my (Arup) implementation. (For example, if my implementation on a data set takes 2 seconds, and yours takes 2.5 seconds, then you'll earn 2/2.5*10 = 8 points out of 10 for it.) If this becomes too harsh, then I will adjust the grading scale. If your code works incorrectly on a test case, you will automatically earn 0 points for that case. Thus, it's most important for your code to work correctly always.

Twenty points of your grade will come from your programming style and documentation. Make sure to use good variable names, indent and properly comment your code. Also, make sure to write reasonable methods. No method should be too long, and each method should complete a clearly specified sub-task.
What to turn in
Turn in each .java file you write, one of which must be Sort.java. You must also turn in your design document. Name this file either design.txt or design.doc.
